3 resultados para Distribution network reconfiguration problem
em Massachusetts Institute of Technology
Resumo:
The performances of high-speed network communications frequently rest with the distribution of data-stream. In this paper, a dynamic data-stream balancing architecture based on link information is introduced and discussed firstly. Then the algorithms for simultaneously acquiring the passing nodes and links of a path between any two source-destination nodes rapidly, as well as a dynamic data-stream distribution planning are proposed. Some related topics such as data fragment disposal, fair service, etc. are further studied and discussed. Besides, the performance and efficiency of proposed algorithms, especially for fair service and convergence, are evaluated through a demonstration with regard to the rate of bandwidth utilization. Hoping the discussion presented here can be helpful to application developers in selecting an effective strategy for planning the distribution of data-stream.
Resumo:
This article studies the static pricing problem of a network service provider who has a fixed capacity and faces different types of customers (classes). Each type of customers can have its own capacity constraint but it is assumed that all classes have the same resource requirement. The provider must decide a static price for each class. The customer types are characterized by their arrival process, with a price-dependant arrival rate, and the random time they remain in the system. Many real-life situations could fit in this framework, for example an Internet provider or a call center, but originally this problem was thought for a company that sells phone-cards and needs to set the price-per-minute for each destination. Our goal is to characterize the optimal static prices in order to maximize the provider's revenue. We note that the model here presented, with some slight modifications and additional assumptions can be used in those cases when the objective is to maximize social welfare.
Resumo:
We consider the optimization problem of safety stock placement in a supply chain, as formulated in [1]. We prove that this problem is NP-Hard for supply chains modeled as general acyclic networks. Thus, we do not expect to find a polynomial-time algorithm for safety stock placement for a general-network supply chain.