1 resultado para Distance Sampling
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (50)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Brock University, Canada (5)
- CentAUR: Central Archive University of Reading - UK (111)
- Cochin University of Science & Technology (CUSAT), India (7)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (40)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (10)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (23)
- Duke University (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (4)
- Galway Mayo Institute of Technology, Ireland (1)
- Instituto Politécnico do Porto, Portugal (6)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (6)
- National Center for Biotechnology Information - NCBI (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (3)
- Publishing Network for Geoscientific & Environmental Data (21)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (166)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (42)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (2)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (5)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (102)
- Université de Montréal, Canada (24)
- University of Queensland eSpace - Australia (42)
- University of Southampton, United Kingdom (1)
Resumo:
We present a new method for estimating the expected return of a POMDP from experience. The estimator does not assume any knowle ge of the POMDP and allows the experience to be gathered with an arbitrary set of policies. The return is estimated for any new policy of the POMDP. We motivate the estimator from function-approximation and importance sampling points-of-view and derive its theoretical properties. Although the estimator is biased, it has low variance and the bias is often irrelevant when the estimator is used for pair-wise comparisons.We conclude by extending the estimator to policies with memory and compare its performance in a greedy search algorithm to the REINFORCE algorithm showing an order of magnitude reduction in the number of trials required.