2 resultados para Discrete events
em Massachusetts Institute of Technology
Resumo:
Geologic interpretation is the task of inferring a sequence of events to explain how a given geologic region could have been formed. This report describes the design and implementation of one part of a geologic interpretation problem solver -- a system which uses a simulation technique called imagining to check the validity of a candidate sequence of events. Imagining uses a combination of qualitative and quantitative simulations to reason about the changes which occured to the geologic region. The spatial changes which occur are simulated by constructing a sequence of diagrams. The quantitative simulation needs numeric parameters which are determined by using the qualitative simulation to establish the cumulative changes to an object and by using a description of the current geologic region to make quantitative measurements. The diversity of reasoning skills used in imagining has necessitated the development of multiple representations, each specialized for a different task. Representations to facilitate doing temporal, spatial and numeric reasoning are described in detail. We have also found it useful to explicitly represent processes. Both the qualitative and quantitative simulations use a discrete 'layer cake' model of geologic processes, but each uses a separate representation, specialized to support the type of simulation. These multiple representations have enabled us to develop a powerful, yet modular, system for reasoning about change.
Resumo:
Two kinds of process models have been used in programs that reason about change: Discrete and continuous models. We describe the design and implementation of a qualitative simulator, PEPTIDE, which uses both kinds of process models to predict the behavior of molecular energetic systems. The program uses a discrete process model to simulate both situations involving abrupt changes in quantities and the actions of small numbers of molecules. It uses a continuous process model to predict gradual changes in quantities. A novel technique, called aggregation, allows the simulator to switch between theses models through the recognition and summary of cycles. The flexibility of PEPTIDE's aggregator allows the program to detect cycles within cycles and predict the behavior of complex situations.