1 resultado para Dirichlet Regression compositional model.
em Massachusetts Institute of Technology
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Aston University Research Archive (33)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (31)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (292)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (26)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (12)
- CentAUR: Central Archive University of Reading - UK (57)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (24)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (35)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (11)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (26)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- Duke University (2)
- Glasgow Theses Service (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (5)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (39)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (72)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Scielo Saúde Pública - SP (18)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (5)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (13)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (17)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (38)
- Université de Montréal, Canada (6)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (53)
- University of Washington (2)
Resumo:
Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.