1 resultado para Direct digital detector images
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (19)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (156)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (42)
- Bucknell University Digital Commons - Pensilvania - USA (8)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (14)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (15)
- Cochin University of Science & Technology (CUSAT), India (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (16)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Deposito de Dissertacoes e Teses Digitais - Portugal (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (20)
- Digital Commons @ DU | University of Denver Research (12)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (30)
- Digital Peer Publishing (3)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- DRUM (Digital Repository at the University of Maryland) (8)
- Duke University (1)
- Harvard University (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (7)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (2)
- Publishing Network for Geoscientific & Environmental Data (16)
- QSpace: Queen's University - Canada (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (8)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (32)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (23)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (174)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (22)
- Scielo Uruguai (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (28)
- Universidade do Minho (9)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universidade Metodista de São Paulo (7)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (34)
- Université de Montréal (1)
- Université de Montréal, Canada (9)
- University of Connecticut - USA (1)
- University of Michigan (17)
- University of Queensland eSpace - Australia (77)
- University of Southampton, United Kingdom (4)
- University of Washington (1)
Resumo:
In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivation for developing a component based approach is two fold: first, to enhance the performance of person detection systems on frontal and rear views of people and second, to develop a framework that directly addresses the problem of detecting people who are partially occluded or whose body parts blend in with the background. The data classification is handled by several support vector machine classifiers arranged in two layers. This architecture is known as Adaptive Combination of Classifiers (ACC). The system performs very well and is capable of detecting people even when all components of a person are not found. The performance of the system is significantly better than a full body person detector designed along similar lines. This suggests that the improved performance is due to the components based approach and the ACC data classification structure.