7 resultados para Differential connection
em Massachusetts Institute of Technology
Resumo:
Several algorithms for optical flow are studied theoretically and experimentally. Differential and matching methods are examined; these two methods have differing domains of application- differential methods are best when displacements in the image are small (<2 pixels) while matching methods work well for moderate displacements but do not handle sub-pixel motions. Both types of optical flow algorithm can use either local or global constraints, such as spatial smoothness. Local matching and differential techniques and global differential techniques will be examined. Most algorithms for optical flow utilize weak assumptions on the local variation of the flow and on the variation of image brightness. Strengthening these assumptions improves the flow computation. The computational consequence of this is a need for larger spatial and temporal support. Global differential approaches can be extended to local (patchwise) differential methods and local differential methods using higher derivatives. Using larger support is valid when constraint on the local shape of the flow are satisfied. We show that a simple constraint on the local shape of the optical flow, that there is slow spatial variation in the image plane, is often satisfied. We show how local differential methods imply the constraints for related methods using higher derivatives. Experiments show the behavior of these optical flow methods on velocity fields which so not obey the assumptions. Implementation of these methods highlights the importance of numerical differentiation. Numerical approximation of derivatives require care, in two respects: first, it is important that the temporal and spatial derivatives be matched, because of the significant scale differences in space and time, and, second, the derivative estimates improve with larger support.
Resumo:
Both multilayer perceptrons (MLP) and Generalized Radial Basis Functions (GRBF) have good approximation properties, theoretically and experimentally. Are they related? The main point of this paper is to show that for normalized inputs, multilayer perceptron networks are radial function networks (albeit with a non-standard radial function). This provides an interpretation of the weights w as centers t of the radial function network, and therefore as equivalent to templates. This insight may be useful for practical applications, including better initialization procedures for MLP. In the remainder of the paper, we discuss the relation between the radial functions that correspond to the sigmoid for normalized inputs and well-behaved radial basis functions, such as the Gaussian. In particular, we observe that the radial function associated with the sigmoid is an activation function that is good approximation to Gaussian basis functions for a range of values of the bias parameter. The implication is that a MLP network can always simulate a Gaussian GRBF network (with the same number of units but less parameters); the converse is true only for certain values of the bias parameter. Numerical experiments indicate that this constraint is not always satisfied in practice by MLP networks trained with backpropagation. Multiscale GRBF networks, on the other hand, can approximate MLP networks with a similar number of parameters.
Resumo:
This project investigates the computational representation of differentiable manifolds, with the primary goal of solving partial differential equations using multiple coordinate systems on general n- dimensional spaces. In the process, this abstraction is used to perform accurate integrations of ordinary differential equations using multiple coordinate systems. In the case of linear partial differential equations, however, unexpected difficulties arise even with the simplest equations.
Resumo:
How the visual system extracts shape information from a single grey-level image can be approached by examining how the information about shape is contained in the image. This technical report considers the characteristic equations derived by Horn as a dynamical system. Certain image critical points generate dynamical system critical points. The stable and unstable manifolds of these critical points correspond to convex and concave solution surfaces, giving more general existence and uniqueness results. A new kind of highly parallel, robust shape from shading algorithm is suggested on neighborhoods of these critical points. The information at bounding contours in the image is also analyzed.
Resumo:
This paper explores automating the qualitative analysis of physical systems. It describes a program, called PLR, that takes parameterized ordinary differential equations as input and produces a qualitative description of the solutions for all initial values. PLR approximates intractable nonlinear systems with piecewise linear ones, analyzes the approximations, and draws conclusions about the original systems. It chooses approximations that are accurate enough to reproduce the essential properties of their nonlinear prototypes, yet simple enough to be analyzed completely and efficiently. It derives additional properties, such as boundedness or periodicity, by theoretical methods. I demonstrate PLR on several common nonlinear systems and on published examples from mechanical engineering.
Resumo:
Considering the major role of insulin signaling on fatty acid synthesis via stimulation of lipogenic enzymes, differential effects of insulin signaling on individual carbon fluxes for fatty acid synthesis have been investigated by comparing the individual lipogenic fluxes in WT and IRS-1 knockout (IRS-1 KO) brown adipocytes. Results from experiments on WT and IRS-1 KO cells incubated with [5-¹³C] glutamine were consistent with the existence of reductive carboxylation pathway. Analysis of isotopomer distribution of nine metabolites related to the lipogenic routes from glucose and glutamine in IRS-1 KO cells using [U-¹³C] glutamine as compared to that in WT cells indicated that flux through reductive carboxylation pathway was diminished while flux through conventional TCA cycle was stimulated due to absence of insulin signaling in IRS-1 KO cells. This observation was confirmed by quantitative estimation of individual lipogenic fluxes in IRS-1 KO cells and their comparison with fluxes in WT cells. Thus, these results suggest that glutamine’s substantial contribution to fatty acid synthesis can be directly manipulated by controlling the flux through reductive carboxylation of alpha-ketoglutarate to citrate using hormone (insulin).
Resumo:
While protein microarray technology has been successful in demonstrating its usefulness for large scale high-throughput proteome profiling, performance of antibody/antigen microarrays has been only moderately productive. Immobilization of either the capture antibodies or the protein samples on solid supports has severe drawbacks. Denaturation of the immobilized proteins as well as inconsistent orientation of antibodies/ligands on the arrays can lead to erroneous results. This has prompted a number of studies to address these challenges by immobilizing proteins on biocompatible surfaces, which has met with limited success. Our strategy relates to a multiplexed, sensitive and high-throughput method for the screening quantification of intracellular signalling proteins from a complex mixture of proteins. Each signalling protein to be monitored has its capture moiety linked to a specific oligo âtag’. The array involves the oligonucleotide hybridization-directed localization and identification of different signalling proteins simultaneously, in a rapid and easy manner. Antibodies have been used as the capture moieties for specific identification of each signaling protein. The method involves covalently partnering each antibody/protein molecule with a unique DNA or DNA derivatives oligonucleotide tag that directs the antibody to a unique site on the microarray due to specific hybridization with a complementary tag-probe on the array. Particular surface modifications and optimal conditions allowed high signal to noise ratio which is essential to the success of this approach.