4 resultados para Detailed Mechanics
em Massachusetts Institute of Technology
Resumo:
This thesis investigates what knowledge is necessary to solve mechanics problems. A program NEWTON is described which understands and solves problems in mechanics mini-world of objects moving on surfaces. Facts and equations such as those given in mechanics text need to be represented. However, this is far from sufficient to solve problems. Human problem solvers rely on "common sense" and "qualitative" knowledge which the physics text tacitly assumes to be present. A mechanics problem solver must embody such knowledge. Quantitative knowledge given by equations and more qualitative common sense knowledge are the major research points exposited in this thesis. The major issue in solving problems is planning. Planning involves tentatively outlining a possible path to the solution without actually solving the problem. Such a plan needs to be constructed and debugged in the process of solving the problem. Envisionment, or qualitative simulation of the event, plays a central role in this planning process.
Resumo:
A computational model of observation in quantum mechanics is presented. The model provides a clean and simple computational paradigm which can be used to illustrate and possibly explain some of the unintuitive and unexpected behavior of some quantum mechanical systems. As examples, the model is used to simulate three seminal quantum mechanical experiments. The results obtained agree with the predictions of quantum mechanics (and physical measurements), yet the model is perfectly deterministic and maintains a notion of locality.
Resumo:
In recent years, researchers in artificial intelligence have become interested in replicating human physical reasoning talents in computers. One of the most important skills in this area is predicting how physical systems will behave. This thesis discusses an implemented program that generates algebraic descriptions of how systems of rigid bodies evolve over time. Discussion about the design of this program identifies a physical reasoning paradigm and knowledge representation approach based on mathematical model construction and algebraic reasoning. This paradigm offers several advantages over methods that have become popular in the field, and seems promising for reasoning about a wide variety of classical mechanics problems.
Resumo:
The HMAX model has recently been proposed by Riesenhuber & Poggio as a hierarchical model of position- and size-invariant object recognition in visual cortex. It has also turned out to model successfully a number of other properties of the ventral visual stream (the visual pathway thought to be crucial for object recognition in cortex), and particularly of (view-tuned) neurons in macaque inferotemporal cortex, the brain area at the top of the ventral stream. The original modeling study only used ``paperclip'' stimuli, as in the corresponding physiology experiment, and did not explore systematically how model units' invariance properties depended on model parameters. In this study, we aimed at a deeper understanding of the inner workings of HMAX and its performance for various parameter settings and ``natural'' stimulus classes. We examined HMAX responses for different stimulus sizes and positions systematically and found a dependence of model units' responses on stimulus position for which a quantitative description is offered. Interestingly, we find that scale invariance properties of hierarchical neural models are not independent of stimulus class, as opposed to translation invariance, even though both are affine transformations within the image plane.