6 resultados para Desktop manufacturing
em Massachusetts Institute of Technology
Resumo:
-Industrial product maturity impact on manufacturing -What is manufacturing system design -The manufacturing system design framework
Resumo:
Manufacturing has evolved to become a critical element of the competitive skill set of defense aerospace firms. Given the changes in the acquisition environment and culture; traditional “thrown over the wall” means of developing and manufacturing products are insufficient. Also, manufacturing systems are complex systems that need to be carefully designed in a holistic manner and there are shortcomings with available tools and methods to assist in the design of these systems. This paper outlines the generation and validation of a framework to guide this manufacturing system design process.
Resumo:
The Manufacturing Systems team was one of the research teams within the Lean Aerospace Initiative (LAI) whose goal was to document, analyze and communicate the design attributes and relationships that lead to significant performance improvements in manufacturing systems in the defense aerospace industry. This report will provide an integrated record of this research using the Production Operations Transition to Lean Roadmap as its organizing framework.
Resumo:
Current Value Stream Map Future Value Stream Map Research Motivation Key Research Questions
Resumo:
This paper presents a model and analysis of a synchronous tandem flow line that produces different part types on unreliable machines. The machines operate according to a static priority rule, operating on the highest priority part whenever possible, and operating on lower priority parts only when unable to produce those with higher priorities. We develop a new decomposition method to analyze the behavior of the manufacturing system by decomposing the long production line into small analytically tractable components. As a first step in modeling a production line with more than one part type, we restrict ourselves to the case where there are two part types. Detailed modeling and derivations are presented with a small two-part-type production line that consists of two processing machines and two demand machines. Then, a generalized longer flow line is analyzed. Furthermore, estimates for performance measures, such as average buffer levels and production rates, are presented and compared to extensive discrete event simulation. The quantitative behavior of the two-part type processing line under different demand scenarios is also provided.
Resumo:
Manufacturing has evolved to become a critical element of the competitive skill set of defense aerospace firms. Given the changes in the acquisition environment and culture; traditional “thrown over the wall” means of developing and manufacturing products are insufficient. Also, manufacturing systems are complex systems that need to be carefully designed in a holistic manner and there are shortcomings with available tools and methods to assist in the design of these systems. This paper outlines the generation and validation of a framework to guide this manufacturing system design process.