13 resultados para Designs Qualitative
em Massachusetts Institute of Technology
Resumo:
How can one compute qualitative properties of the optical flow, such as expansion or rotation, in a way which is robust and invariant to the position of the focus of expansion or the center of rotation? We suggest a particularly simple algorithm, well-suited to VLSI implementations, that exploits well-known relations between the integral and differential properties of vector fields and their linear behaviour near singularities.
Resumo:
We describe a program called SketchIT capable of producing multiple families of designs from a single sketch. The program is given a rough sketch (drawn using line segments for part faces and icons for springs and kinematic joints) and a description of the desired behavior. The sketch is "rough" in the sense that taken literally, it may not work. From this single, perhaps flawed sketch and the behavior description, the program produces an entire family of working designs. The program also produces design variants, each of which is itself a family of designs. SketchIT represents each family of designs with a "behavior ensuring parametric model" (BEP-Model), a parametric model augmented with a set of constraints that ensure the geometry provides the desired behavior. The construction of the BEP-Model from the sketch and behavior description is the primary task and source of difficulty in this undertaking. SketchIT begins by abstracting the sketch to produce a qualitative configuration space (qc-space) which it then uses as its primary representation of behavior. SketchIT modifies this initial qc-space until qualitative simulation verifies that it produces the desired behavior. SketchIT's task is then to find geometries that implement this qc-space. It does this using a library of qc-space fragments. Each fragment is a piece of parametric geometry with a set of constraints that ensure the geometry implements a specific kind of boundary (qcs-curve) in qc-space. SketchIT assembles the fragments to produce the BEP-Model. SketchIT produces design variants by mapping the qc-space to multiple implementations, and by transforming rotating parts to translating parts and vice versa.
Resumo:
This report describes MM, a computer program that can model a variety of mechanical and fluid systems. Given a system's structure and qualitative behavior, MM searches for models using an energy-based modeling framework. MM uses general facts about physical systems to relate behavioral and model properties. These facts enable a more focussed search for models than would be obtained by mere comparison of desired and predicted behaviors. When these facts do not apply, MM uses behavior-constrained qualitative simulation to verify candidate models efficiently. MM can also design experiments to distinguish among multiple candidate models.
Resumo:
This report describes a program which automatically characterizes the behavior of any driven, nonlinear, electrical circuit. To do this, the program autonomously selects interesting input parameters, drives the circuit, measures its response, performs a set of numeric computations on the measured data, interprets the results, and decomposes the circuit's parameter space into regions of qualitatively distinct behavior. The output is a two-dimensional portrait summarizing the high-level, qualitative behavior of the circuit for every point in the graph, an accompanying textual explanation describing any interesting patterns observed in the diagram, and a symbolic description of the circuit's behavior which can be passed on to other programs for further analysis.
Resumo:
This paper explores automating the qualitative analysis of physical systems. It describes a program, called PLR, that takes parameterized ordinary differential equations as input and produces a qualitative description of the solutions for all initial values. PLR approximates intractable nonlinear systems with piecewise linear ones, analyzes the approximations, and draws conclusions about the original systems. It chooses approximations that are accurate enough to reproduce the essential properties of their nonlinear prototypes, yet simple enough to be analyzed completely and efficiently. It derives additional properties, such as boundedness or periodicity, by theoretical methods. I demonstrate PLR on several common nonlinear systems and on published examples from mechanical engineering.
Resumo:
Reasoning about motion is an important part of our commonsense knowledge, involving fluent spatial reasoning. This work studies the qualitative and geometric knowledge required to reason in a world that consists of balls moving through space constrained by collisions with surfaces, including dissipative forces and multiple moving objects. An analog geometry representation serves the program as a diagram, allowing many spatial questions to be answered by numeric calculation. It also provides the foundation for the construction and use of place vocabulary, the symbolic descriptions of space required to do qualitative reasoning about motion in the domain. The actual motion of a ball is described as a network consisting of descriptions of qualitatively distinct types of motion. Implementing the elements of these networks in a constraint language allows the same elements to be used for both analysis and simulation of motion. A qualitative description of the actual motion is also used to check the consistency of assumptions about motion. A process of qualitative simulation is used to describe the kinds of motion possible from some state. The ambiguity inherent in such a description can be reduced by assumptions about physical properties of the ball or assumptions about its motion. Each assumption directly rules out some kinds of motion, but other knowledge is required to determine the indirect consequences of making these assumptions. Some of this knowledge is domain dependent and relies heavily on spatial descriptions.
Resumo:
With the push towards sub-micron technology, transistor models have become increasingly complex. The number of components in integrated circuits has forced designer's efforts and skills towards higher levels of design. This has created a gap between design expertise and the performance demands increasingly imposed by the technology. To alleviate this problem, software tools must be developed that provide the designer with expert advice on circuit performance and design. This requires a theory that links the intuitions of an expert circuit analyst with the corresponding principles of formal theory (i.e. algebra, calculus, feedback analysis, network theory, and electrodynamics), and that makes each underlying assumption explicit.
Resumo:
Objects move, collide, flow, bend, heat up, cool down, stretch, compress and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand common sense physical reasoning and make programs that interact with the physical world as well as people do we must understand qualitative reasoning about processes, when they will occur, their effects, and when they will stop. Qualitative Process theory defines a simple notion of physical process that appears useful as a language in which to write dynamical theories. Reasoning about processes also motivates a new qualitative representation for quantity in terms of inequalities, called quantity space. This report describes the basic concepts of Qualitative Process theory, several different kinds of reasoning that can be performed with them, and discusses its impact on other issues in common sense reasoning about the physical world, such as causal reasoning and measurement interpretation. Several extended examples illustrate the utility of the theory, including figuring out that a boiler can blow up, that an oscillator with friction will eventually stop, and how to say that you can pull with a string but not push with it. This report also describes GIZMO, an implemented computer program which uses Qualitative Process theory to make predictions and interpret simple measurements. The represnetations and algorithms used in GIZMO are described in detail, and illustrated using several examples.
Resumo:
This thesis investigates what knowledge is necessary to solve mechanics problems. A program NEWTON is described which understands and solves problems in mechanics mini-world of objects moving on surfaces. Facts and equations such as those given in mechanics text need to be represented. However, this is far from sufficient to solve problems. Human problem solvers rely on "common sense" and "qualitative" knowledge which the physics text tacitly assumes to be present. A mechanics problem solver must embody such knowledge. Quantitative knowledge given by equations and more qualitative common sense knowledge are the major research points exposited in this thesis. The major issue in solving problems is planning. Planning involves tentatively outlining a possible path to the solution without actually solving the problem. Such a plan needs to be constructed and debugged in the process of solving the problem. Envisionment, or qualitative simulation of the event, plays a central role in this planning process.
Resumo:
This report investigates some techinques appropriate to representing the knowledge necessary for understanding a class of electronic machines -- radio receivers. A computational performance model - WATSON - is presented. WATSONs task is to isolate failures in radio receivers whose principles of operation have been appropriately described in his knowledge base. The thesis of the report is that hierarchically organized representational structures are essential to the understanding of complex mechanisms. Such structures lead not only to descriptions of machine operation at many levels of detail, but also offer a powerful means of organizing "specialist" knowledge for the repair of machines when they are broken.
Resumo:
Electrical circuit designers seldom create really new topologies or use old ones in a novel way. Most designs are known combinations of common configurations tailored for the particular problem at hand. In this thesis I show that much of the behavior of a designer engaged in such ordinary design can be modelled by a clearly defined computational mechanism executing a set of stylized rules. Each of my rules embodies a particular piece of the designer's knowledge. A circuit is represented as a hierarchy of abstract objects, each of which is composed of other objects. The leaves of this tree represent the physical devices from which physical circuits are fabricated. By analogy with context-free languages, a class of circuits is generated by a phrase-structure grammar of which each rule describes how one type of abstract object can be expanded into a combination of more concrete parts. Circuits are designed by first postulating an abstract object which meets the particular design requirements. This object is then expanded into a concrete circuit by successive refinement using rules of my grammar. There are in general many rules which can be used to expand a given abstract component. Analysis must be done at each level of the expansion to constrain the search to a reasonable set. Thus the rule of my circuit grammar provide constraints which allow the approximate qualitative analysis of partially instantiated circuits. Later, more careful analysis in terms of more concrete components may lead to the rejection of a line of expansion which at first looked promising. I provide special failure rules to direct the repair in this case.
Resumo:
We compare a broad range of optimal product line design methods. The comparisons take advantage of recent advances that make it possible to identify the optimal solution to problems that are too large for complete enumeration. Several of the methods perform surprisingly well, including Simulated Annealing, Product-Swapping and Genetic Algorithms. The Product-Swapping heuristic is remarkable for its simplicity. The performance of this heuristic suggests that the optimal product line design problem may be far easier to solve in practice than indicated by complexity theory.
Resumo:
by John M. Barentine.