6 resultados para Denture (partial, removable)
em Massachusetts Institute of Technology
Resumo:
Scientists are faced with a dilemma: either they can write abstract programs that express their understanding of a problem, but which do not execute efficiently; or they can write programs that computers can execute efficiently, but which are difficult to write and difficult to understand. We have developed a compiler that uses partial evaluation and scheduling techniques to provide a solution to this dilemma.
Resumo:
We describe an approach to parallel compilation that seeks to harness the vast amount of fine-grain parallelism that is exposed through partial evaluation of numerically-intensive scientific programs. We have constructed a compiler for the Supercomputer Toolkit parallel processor that uses partial evaluation to break down data abstractions and program structure, producing huge basic blocks that contain large amounts of fine-grain parallelism. We show that this fine-grain prarllelism can be effectively utilized even on coarse-grain parallel architectures by selectively grouping operations together so as to adjust the parallelism grain-size to match the inter-processor communication capabilities of the target architecture.
Resumo:
We describe the key role played by partial evaluation in the Supercomputer Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputer Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at M.I.T., and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
Resumo:
We constructed a parallelizing compiler that utilizes partial evaluation to achieve efficient parallel object code from very high-level data independent source programs. On several important scientific applications, the compiler attains parallel performance equivalent to or better than the best observed results from the manual restructuring of code. This is the first attempt to capitalize on partial evaluation's ability to expose low-level parallelism. New static scheduling techniques are used to utilize the fine-grained parallelism of the computations. The compiler maps the computation graph resulting from partial evaluation onto the Supercomputer Toolkit, an eight VLIW processor parallel computer.
Resumo:
This work demonstrates how partial evaluation can be put to practical use in the domain of high-performance numerical computation. I have developed a technique for performing partial evaluation by using placeholders to propagate intermediate results. For an important class of numerical programs, a compiler based on this technique improves performance by an order of magnitude over conventional compilation techniques. I show that by eliminating inherently sequential data-structure references, partial evaluation exposes the low-level parallelism inherent in a computation. I have implemented several parallel scheduling and analysis programs that study the tradeoffs involved in the design of an architecture that can effectively utilize this parallelism. I present these results using the 9- body gravitational attraction problem as an example.
Resumo:
We describe the key role played by partial evaluation in the Supercomputing Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputing Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at MIT, and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.