3 resultados para Denture, Complete, Upper
em Massachusetts Institute of Technology
Resumo:
We present techniques for computing upper and lower bounds on the likelihoods of partial instantiations of variables in sigmoid and noisy-OR networks. The bounds determine confidence intervals for the desired likelihoods and become useful when the size of the network (or clique size) precludes exact computations. We illustrate the tightness of the obtained bounds by numerical experiments.
Resumo:
An increasing number of parameter estimation tasks involve the use of at least two information sources, one complete but limited, the other abundant but incomplete. Standard algorithms such as EM (or em) used in this context are unfortunately not stable in the sense that they can lead to a dramatic loss of accuracy with the inclusion of incomplete observations. We provide a more controlled solution to this problem through differential equations that govern the evolution of locally optimal solutions (fixed points) as a function of the source weighting. This approach permits us to explicitly identify any critical (bifurcation) points leading to choices unsupported by the available complete data. The approach readily applies to any graphical model in O(n^3) time where n is the number of parameters. We use the naive Bayes model to illustrate these ideas and demonstrate the effectiveness of our approach in the context of text classification problems.
Resumo:
The central thesis of this report is that human language is NP-complete. That is, the process of comprehending and producing utterances is bounded above by the class NP, and below by NP-hardness. This constructive complexity thesis has two empirical consequences. The first is to predict that a linguistic theory outside NP is unnaturally powerful. The second is to predict that a linguistic theory easier than NP-hard is descriptively inadequate. To prove the lower bound, I show that the following three subproblems of language comprehension are all NP-hard: decide whether a given sound is possible sound of a given language; disambiguate a sequence of words; and compute the antecedents of pronouns. The proofs are based directly on the empirical facts of the language user's knowledge, under an appropriate idealization. Therefore, they are invariant across linguistic theories. (For this reason, no knowledge of linguistic theory is needed to understand the proofs, only knowledge of English.) To illustrate the usefulness of the upper bound, I show that two widely-accepted analyses of the language user's knowledge (of syntactic ellipsis and phonological dependencies) lead to complexity outside of NP (PSPACE-hard and Undecidable, respectively). Next, guided by the complexity proofs, I construct alternate linguisitic analyses that are strictly superior on descriptive grounds, as well as being less complex computationally (in NP). The report also presents a new framework for linguistic theorizing, that resolves important puzzles in generative linguistics, and guides the mathematical investigation of human language.