4 resultados para Dense Granular flows

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stock markets employ specialized traders, market-makers, designed to provide liquidity and volume to the market by constantly supplying both supply and demand. In this paper, we demonstrate a novel method for modeling the market as a dynamic system and a reinforcement learning algorithm that learns profitable market-making strategies when run on this model. The sequence of buys and sells for a particular stock, the order flow, we model as an Input-Output Hidden Markov Model fit to historical data. When combined with the dynamics of the order book, this creates a highly non-linear and difficult dynamic system. Our reinforcement learning algorithm, based on likelihood ratios, is run on this partially-observable environment. We demonstrate learning results for two separate real stocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rotary valve is a widely used mechanical device in many solids-handling industrial processes. However, it may also be responsible for most of the attrition effects occurring in a typical process. In this study, the attrition effects occurring in a rotary valve operating as a stand-alone device and as part of a pneumatic conveying system were investigated. In the former case granular attrition was carried out at three different rotary valve speeds and the experimental results obtained were found to be in good agreement with the Gwyn correlation. In the latter case three typical air flow rates were used in the pneumatic conveying system. The size distribution of the attrition product obtained at the lowest air flow rate used was not adequately described by the Gwyn correlation. The attrition process and mechanisms involved were analysed and the minimum size of the attrition product obtained from both modes of operations was found to be similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of granular material is of great interest to many researchers in both engineering and science communities. The importance of such a study derives from its complex rheological character and also its significant role in a wide range of industrial applications, such as coal, food, plastics, pharmaceutical, powder metallurgy and mineral processing. A number of recent reports have been focused on the physics of non-cohesive granular material submitted to vertical vibration in either experimental or theoretical approaches. Such a kind of system can be used to separate, mix and dry granular materials in industries. It exhibits different instability behaviour on its surface when under vertical vibration, for example, avalanching, surface fluidization and surface wave, and these phenomena have attracted particular interest of many researchers. However, its fundamental understanding of the instability mechanism is not yet well-understood. This paper is therefore to study the dynamics of granular motion in such a kind of system using Positron Emission Particle Tracking (PEPT), which allows the motion of a single tracer particle to be followed in a non-invasive way. Features of the solids motion such as cycle frequency and dispersion index were investigated via means of authors’ specially-written programmes. Regardless of the surface behaviour, particles are found to travel in rotational movement in horizontal plane. Particle cycle frequency is found to increase strongly with increasing vibration amplitude. Particle dispersion also increased strongly with vibration amplitude. Horizontal dispersion is observed to always exceed vertical dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lubrication-flow model for a free film in a corner is presented. The model, written in the hyperbolic coordinate system ξ = x² – y², η = 2xy, applies to films that are thin in the η direction. The lubrication approximation yields two coupled evolution equations for the film thickness and the velocity field which, to lowest order, describes plug flow in the hyperbolic coordinates. A free film in a corner evolving under surface tension and gravity is investigated. The rate of thinning of a free film is compared to that of a film evolving over a solid substrate. Viscous shear and normal stresses are both captured in the model and are computed for the entire flow domain. It is shown that normal stress dominates over shear stress in the far field, while shear stress dominates close to the corner.