3 resultados para Deep foundations

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The actor message-passing model of concurrent computation has inspired new ideas in the areas of knowledge-based systems, programming languages and their semantics, and computer systems architecture. The model itself grew out of computer languages such as Planner, Smalltalk, and Simula, and out of the use of continuations to interpret imperative constructs within A-calculus. The mathematical content of the model has been developed by Carl Hewitt, Irene Greif, Henry Baker, and Giuseppe Attardi. This thesis extends and unifies their work through the following observations. The ordering laws postulated by Hewitt and Baker can be proved using a notion of global time. The most general ordering laws are in fact equivalent to an axiom of realizability in global time. Independence results suggest that some notion of global time is essential to any model of concurrent computation. Since nondeterministic concurrency is more fundamental than deterministic sequential computation, there may be no need to take fixed points in the underlying domain of a power domain. Power domains built from incomplete domains can solve the problem of providing a fixed point semantics for a class of nondeterministic programming languages in which a fair merge can be written. The event diagrams of Greif's behavioral semantics, augmented by Baker's pending events, form an incomplete domain. Its power domain is the semantic domain in which programs written in actor-based languages are assigned meanings. This denotational semantics is compatible with behavioral semantics. The locality laws postulated by Hewitt and Baker may be proved for the semantics of an actor-based language. Altering the semantics slightly can falsify the locality laws. The locality laws thus constrain what counts as an actor semantics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We contribute a quantitative and systematic model to capture etch non-uniformity in deep reactive ion etch of microelectromechanical systems (MEMS) devices. Deep reactive ion etch is commonly used in MEMS fabrication where high-aspect ratio features are to be produced in silicon. It is typical for many supposedly identical devices, perhaps of diameter 10 mm, to be etched simultaneously into one silicon wafer of diameter 150 mm. Etch non-uniformity depends on uneven distributions of ion and neutral species at the wafer level, and on local consumption of those species at the device, or die, level. An ion–neutral synergism model is constructed from data obtained from etching several layouts of differing pattern opening densities. Such a model is used to predict wafer-level variation with an r.m.s. error below 3%. This model is combined with a die-level model, which we have reported previously, on a MEMS layout. The two-level model is shown to enable prediction of both within-die and wafer-scale etch rate variation for arbitrary wafer loadings.