3 resultados para Deep Inference, Proof Theory, Teoria della Dimostrazione, Cut elimination, Gentzen Hauptsatz
em Massachusetts Institute of Technology
Resumo:
This paper introduces Denotational Proof Languages (DPLs). DPLs are languages for presenting, discovering, and checking formal proofs. In particular, in this paper we discus type-alpha DPLs---a simple class of DPLs for which termination is guaranteed and proof checking can be performed in time linear in the size of the proof. Type-alpha DPLs allow for lucid proof presentation and for efficient proof checking, but not for proof search. Type-omega DPLs allow for search as well as simple presentation and checking, but termination is no longer guaranteed and proof checking may diverge. We do not study type-omega DPLs here. We start by listing some common characteristics of DPLs. We then illustrate with a particularly simple example: a toy type-alpha DPL called PAR, for deducing parities. We present the abstract syntax of PAR, followed by two different kinds of formal semantics: evaluation and denotational. We then relate the two semantics and show how proof checking becomes tantamount to evaluation. We proceed to develop the proof theory of PAR, formulating and studying certain key notions such as observational equivalence that pervade all DPLs. We then present NDL, a type-alpha DPL for classical zero-order natural deduction. Our presentation of NDL mirrors that of PAR, showing how every basic concept that was introduced in PAR resurfaces in NDL. We present sample proofs of several well-known tautologies of propositional logic that demonstrate our thesis that DPL proofs are readable, writable, and concise. Next we contrast DPLs to typed logics based on the Curry-Howard isomorphism, and discuss the distinction between pure and augmented DPLs. Finally we consider the issue of implementing DPLs, presenting an implementation of PAR in SML and one in Athena, and end with some concluding remarks.
Resumo:
This thesis presents the ideas underlying a computer program that takes as input a schematic of a mechanical or hydraulic power transmission system, plus specifications and a utility function, and returns catalog numbers from predefined catalogs for the optimal selection of components implementing the design. Unlike programs for designing single components or systems, the program provides the designer with a high level "language" in which to compose new designs. It then performs some of the detailed design process. The process of "compilation" is based on a formalization of quantitative inferences about hierarchically organized sets of artifacts and operating conditions. This allows the design compilation without the exhaustive enumeration of alternatives.
Resumo:
A procedure is given for recognizing sets of inference rules that generate polynomial time decidable inference relations. The procedure can automatically recognize the tractability of the inference rules underlying congruence closure. The recognition of tractability for that particular rule set constitutes mechanical verification of a theorem originally proved independently by Kozen and Shostak. The procedure is algorithmic, rather than heuristic, and the class of automatically recognizable tractable rule sets can be precisely characterized. A series of examples of rule sets whose tractability is non-trivial, yet machine recognizable, is also given. The technical framework developed here is viewed as a first step toward a general theory of tractable inference relations.