18 resultados para Darboux invariant
em Massachusetts Institute of Technology
Resumo:
In order to recognize an object in an image, we must determine the best transformation from object model to the image. In this paper, we show that for features from coplanar surfaces which undergo linear transformations in space, there exist projections invariant to the surface motions up to rotations in the image field. To use this property, we propose a new alignment approach to object recognition based on centroid alignment of corresponding feature groups. This method uses only a single pair of 2D model and data. Experimental results show the robustness of the proposed method against perturbations of feature positions.
Resumo:
The problem of automatic face recognition is to visually identify a person in an input image. This task is performed by matching the input face against the faces of known people in a database of faces. Most existing work in face recognition has limited the scope of the problem, however, by dealing primarily with frontal views, neutral expressions, and fixed lighting conditions. To help generalize existing face recognition systems, we look at the problem of recognizing faces under a range of viewpoints. In particular, we consider two cases of this problem: (i) many example views are available of each person, and (ii) only one view is available per person, perhaps a driver's license or passport photograph. Ideally, we would like to address these two cases using a simple view-based approach, where a person is represented in the database by using a number of views on the viewing sphere. While the view-based approach is consistent with case (i), for case (ii) we need to augment the single real view of each person with synthetic views from other viewpoints, views we call 'virtual views'. Virtual views are generated using prior knowledge of face rotation, knowledge that is 'learned' from images of prototype faces. This prior knowledge is used to effectively rotate in depth the single real view available of each person. In this thesis, I present the view-based face recognizer, techniques for synthesizing virtual views, and experimental results using real and virtual views in the recognizer.
Resumo:
In this report, a face recognition system that is capable of detecting and recognizing frontal and rotated faces was developed. Two face recognition methods focusing on the aspect of pose invariance are presented and evaluated - the whole face approach and the component-based approach. The main challenge of this project is to develop a system that is able to identify faces under different viewing angles in realtime. The development of such a system will enhance the capability and robustness of current face recognition technology. The whole-face approach recognizes faces by classifying a single feature vector consisting of the gray values of the whole face image. The component-based approach first locates the facial components and extracts them. These components are normalized and combined into a single feature vector for classification. The Support Vector Machine (SVM) is used as the classifier for both approaches. Extensive tests with respect to the robustness against pose changes are performed on a database that includes faces rotated up to about 40 degrees in depth. The component-based approach clearly outperforms the whole-face approach on all tests. Although this approach isproven to be more reliable, it is still too slow for real-time applications. That is the reason why a real-time face recognition system using the whole-face approach is implemented to recognize people in color video sequences.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-- is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance of the descriptor. We also describe feature selection based on a single training image. Virtual images are generated by rotating and rescaling the image and robust features are selected. The results confirm robust performance in cluttered scenes, in the presence of partial occlusions, and when the object is embedded in different backgrounds.
Resumo:
We present a new method to perform reliable matching between different images. This method exploits a projective invariant property between concentric circles and the corresponding projected ellipses to find complete region correspondences centered on interest points. The method matches interest points allowing for a full perspective transformation and exploiting all the available luminance information in the regions. Experiments have been conducted on many different data sets to compare our approach to SIFT local descriptors. The results show the new method offers increased robustness to partial visibility, object rotation in depth, and viewpoint angle change.
Resumo:
Affine transformations are often used in recognition systems, to approximate the effects of perspective projection. The underlying mathematics is for exact feature data, with no positional uncertainty. In practice, heuristics are added to handle uncertainty. We provide a precise analysis of affine point matching, obtaining an expression for the range of affine-invariant values consistent with bounded uncertainty. This analysis reveals that the range of affine-invariant values depends on the actual $x$-$y$-positions of the features, i.e. with uncertainty, affine representations are not invariant with respect to the Cartesian coordinate system. We analyze the effect of this on geometric hashing and alignment recognition methods.
Resumo:
How can one compute qualitative properties of the optical flow, such as expansion or rotation, in a way which is robust and invariant to the position of the focus of expansion or the center of rotation? We suggest a particularly simple algorithm, well-suited to VLSI implementations, that exploits well-known relations between the integral and differential properties of vector fields and their linear behaviour near singularities.
Resumo:
Different approaches to visual object recognition can be divided into two general classes: model-based vs. non model-based schemes. In this paper we establish some limitation on the class of non model-based recognition schemes. We show that every function that is invariant to viewing position of all objects is the trivial (constant) function. It follows that every consistent recognition scheme for recognizing all 3-D objects must in general be model based. The result is extended to recognition schemes that are imperfect (allowed to make mistakes) or restricted to certain classes of objects.
Resumo:
How does the brain recognize three-dimensional objects? We trained monkeys to recognize computer rendered objects presented from an arbitrarily chosen training view, and subsequently tested their ability to generalize recognition for other views. Our results provide additional evidence in favor of with a recognition model that accomplishes view-invariant performance by storing a limited number of object views or templates together with the capacity to interpolate between the templates (Poggio and Edelman, 1990).
Resumo:
We propose an affine framework for perspective views, captured by a single extremely simple equation based on a viewer-centered invariant we call "relative affine structure". Via a number of corollaries of our main results we show that our framework unifies previous work --- including Euclidean, projective and affine --- in a natural and simple way, and introduces new, extremely simple, algorithms for the tasks of reconstruction from multiple views, recognition by alignment, and certain image coding applications.
Resumo:
The inferior temporal cortex (IT) of monkeys is thought to play an essential role in visual object recognition. Inferotemporal neurons are known to respond to complex visual stimuli, including patterns like faces, hands, or other body parts. What is the role of such neurons in object recognition? The present study examines this question in combined psychophysical and electrophysiological experiments, in which monkeys learned to classify and recognize novel visual 3D objects. A population of neurons in IT were found to respond selectively to such objects that the monkeys had recently learned to recognize. A large majority of these cells discharged maximally for one view of the object, while their response fell off gradually as the object was rotated away from the neuron"s preferred view. Most neurons exhibited orientation-dependent responses also during view-plane rotations. Some neurons were found tuned around two views of the same object, while a very small number of cells responded in a view- invariant manner. For five different objects that were extensively used during the training of the animals, and for which behavioral performance became view-independent, multiple cells were found that were tuned around different views of the same object. No selective responses were ever encountered for views that the animal systematically failed to recognize. The results of our experiments suggest that neurons in this area can develop a complex receptive field organization as a consequence of extensive training in the discrimination and recognition of objects. Simple geometric features did not appear to account for the neurons" selective responses. These findings support the idea that a population of neurons -- each tuned to a different object aspect, and each showing a certain degree of invariance to image transformations -- may, as an assembly, encode complex 3D objects. In such a system, several neurons may be active for any given vantage point, with a single unit acting like a blurred template for a limited neighborhood of a single view.
Resumo:
If we are provided a face database with only one example view per person, is it possible to recognize new views of them under a variety of different poses, especially views rotated in depth from the original example view? We investigate using prior knowledge about faces plus each single example view to generate virtual views of each person, or views of the face as seen from different poses. Prior knowledge of faces is represented in an example-based way, using 2D views of a prototype face seen rotating in depth. The synthesized virtual views are evaluated as example views in a view-based approach to pose-invariant face recognition. They are shown to improve the recognition rate over the scenario where only the single real view is used.
Resumo:
The problem of detecting intensity changes in images is canonical in vision. Edge detection operators are typically designed to optimally estimate first or second derivative over some (usually small) support. Other criteria such as output signal to noise ratio or bandwidth have also been argued for. This thesis is an attempt to formulate a set of edge detection criteria that capture as directly as possible the desirable properties of an edge operator. Variational techniques are used to find a solution over the space of all linear shift invariant operators. The first criterion is that the detector have low probability of error i.e. failing to mark edges or falsely marking non-edges. The second is that the marked points should be as close as possible to the centre of the true edge. The third criterion is that there should be low probability of more than one response to a single edge. The technique is used to find optimal operators for step edges and for extended impulse profiles (ridges or valleys in two dimensions). The extension of the one dimensional operators to two dimentions is then discussed. The result is a set of operators of varying width, length and orientation. The problem of combining these outputs into a single description is discussed, and a set of heuristics for the integration are given.
Resumo:
The central thesis of this report is that human language is NP-complete. That is, the process of comprehending and producing utterances is bounded above by the class NP, and below by NP-hardness. This constructive complexity thesis has two empirical consequences. The first is to predict that a linguistic theory outside NP is unnaturally powerful. The second is to predict that a linguistic theory easier than NP-hard is descriptively inadequate. To prove the lower bound, I show that the following three subproblems of language comprehension are all NP-hard: decide whether a given sound is possible sound of a given language; disambiguate a sequence of words; and compute the antecedents of pronouns. The proofs are based directly on the empirical facts of the language user's knowledge, under an appropriate idealization. Therefore, they are invariant across linguistic theories. (For this reason, no knowledge of linguistic theory is needed to understand the proofs, only knowledge of English.) To illustrate the usefulness of the upper bound, I show that two widely-accepted analyses of the language user's knowledge (of syntactic ellipsis and phonological dependencies) lead to complexity outside of NP (PSPACE-hard and Undecidable, respectively). Next, guided by the complexity proofs, I construct alternate linguisitic analyses that are strictly superior on descriptive grounds, as well as being less complex computationally (in NP). The report also presents a new framework for linguistic theorizing, that resolves important puzzles in generative linguistics, and guides the mathematical investigation of human language.
Resumo:
The HMAX model has recently been proposed by Riesenhuber & Poggio as a hierarchical model of position- and size-invariant object recognition in visual cortex. It has also turned out to model successfully a number of other properties of the ventral visual stream (the visual pathway thought to be crucial for object recognition in cortex), and particularly of (view-tuned) neurons in macaque inferotemporal cortex, the brain area at the top of the ventral stream. The original modeling study only used ``paperclip'' stimuli, as in the corresponding physiology experiment, and did not explore systematically how model units' invariance properties depended on model parameters. In this study, we aimed at a deeper understanding of the inner workings of HMAX and its performance for various parameter settings and ``natural'' stimulus classes. We examined HMAX responses for different stimulus sizes and positions systematically and found a dependence of model units' responses on stimulus position for which a quantitative description is offered. Interestingly, we find that scale invariance properties of hierarchical neural models are not independent of stimulus class, as opposed to translation invariance, even though both are affine transformations within the image plane.