3 resultados para DYNAMICAL REALIZATIONS
em Massachusetts Institute of Technology
Resumo:
The Bifurcation Interpreter is a computer program that autonomously explores the steady-state orbits of one-parameter families of periodically- driven oscillators. To report its findings, the Interpreter generates schematic diagrams and English text descriptions similar to those appearing in the science and engineering research literature. Given a system of equations as input, the Interpreter uses symbolic algebra to automatically generate numerical procedures that simulate the system. The Interpreter incorporates knowledge about dynamical systems theory, which it uses to guide the simulations, to interpret the results, and to minimize the effects of numerical error.
Resumo:
I present a novel design methodology for the synthesis of automatic controllers, together with a computational environment---the Control Engineer's Workbench---integrating a suite of programs that automatically analyze and design controllers for high-performance, global control of nonlinear systems. This work demonstrates that difficult control synthesis tasks can be automated, using programs that actively exploit and efficiently represent knowledge of nonlinear dynamics and phase space and effectively use the representation to guide and perform the control design. The Control Engineer's Workbench combines powerful numerical and symbolic computations with artificial intelligence reasoning techniques. As a demonstration, the Workbench automatically designed a high-quality maglev controller that outperforms a previous linear design by a factor of 20.
Resumo:
Formalizing linguists' intuitions of language change as a dynamical system, we quantify the time course of language change including sudden vs. gradual changes in languages. We apply the computer model to the historical loss of Verb Second from Old French to modern French, showing that otherwise adequate grammatical theories can fail our new evolutionary criterion.