1 resultado para DDoS attack discrimination
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (2)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (4)
- Archive of European Integration (32)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (73)
- Brock University, Canada (13)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Cambridge University Engineering Department Publications Database (11)
- Carolina Law Scholarship Repository (1)
- CentAUR: Central Archive University of Reading - UK (42)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Cornell: DigitalCommons@ILR (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (5)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (33)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (18)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (9)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (111)
- Queensland University of Technology - ePrints Archive (86)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (34)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (15)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (15)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (4)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (11)
- Université de Montréal, Canada (30)
- University of Connecticut - USA (9)
- University of Michigan (106)
- University of Queensland eSpace - Australia (21)
- University of Southampton, United Kingdom (2)
- WestminsterResearch - UK (9)
Resumo:
We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involve distributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric class, in the context of anomaly detection rather than classification, or when the labels in the training set are uncertain or incomplete. Support vector machines are naturally subsumed under this class and we provide several extensions. We are also able to estimate exactly and efficiently discriminative distributions over tree structures of class-conditional models within this framework. Preliminary experimental results are indicative of the potential in these techniques.