1 resultado para Current voltage curve
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (36)
- CentAUR: Central Archive University of Reading - UK (8)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (107)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (3)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (2)
- Glasgow Theses Service (2)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (181)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico de Viseu (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (14)
- Nottingham eTheses (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (54)
- Queensland University of Technology - ePrints Archive (263)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (103)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (29)
- Universidade Complutense de Madrid (1)
- Universidade do Algarve (3)
- Universidade Federal do Pará (4)
- Universita di Parma (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (7)
- University of Michigan (6)
- University of Queensland eSpace - Australia (11)
- University of Washington (2)
Resumo:
Freehand sketching is both a natural and crucial part of design, yet is unsupported by current design automation software. We are working to combine the flexibility and ease of use of paper and pencil with the processing power of a computer to produce a design environment that feels as natural as paper, yet is considerably smarter. One of the most basic steps in accomplishing this is converting the original digitized pen strokes in the sketch into the intended geometric objects using feature point detection and approximation. We demonstrate how multiple sources of information can be combined for feature detection in strokes and apply this technique using two approaches to signal processing, one using simple average based thresholding and a second using scale space.