2 resultados para Current source inverter

em Massachusetts Institute of Technology


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The MOS transistor physical model as described in [3] is presented here as a network model. The goal is to obtain an accurate model, suitable for simulation, free from certain problems reported in the literature [13], and conceptually as simple as possible. To achieve this goal the original model had to be extended and modified. The paper presents the derivation of the network model from physical equations, including the corrections which are required for simulation and which compensate for simplifications introduced in the original physical model. Our intrinsic MOS model consists of three nonlinear voltage-controlled capacitors and a dependent current source. The charges of the capacitors and the current of the current source are functions of the voltages $V_{gs}$, $V_{bs}$, and $V_{ds}$. The complete model consists of the intrinsic model plus the parasitics. The apparent simplicity of the model is a result of hiding information in the characteristics of the nonlinear components. The resulted network model has been checked by simulation and analysis. It is shown that the network model is suitable for simulation: It is defined for any value of the voltages; the functions involved are continuous and satisfy Lipschitz conditions with no jumps at region boundaries; Derivatives have been computed symbolically and are available for use by the Newton-Raphson method. The model"s functions can be measured from the terminals. It is also shown that small channel effects can be included in the model. Higher frequency effects can be modeled by using a network consisting of several sections of the basic lumped model. Future plans include a detailed comparison of the network model with models such as SPICE level 3 and a comparison of the multi- section higher frequency model with experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of GaInNAs/GaAs quantum dot structures with GaAsN barrier layers grown by solid source molecular beam epitaxy. Extension of the emission wavelength of GaInNAs quantum dots by ~170nm was observed in samples with GaAsN barriers in place of GaAs. However, optimization of the GaAsN barrier layer thickness is necessary to avoid degradation in luminescence intensity and structural property of the GaInNAs dots. Lasers with GaInNAs quantum dots as active layer were fabricated and room-temperature continuous-wave lasing was observed for the first time. Lasing occurs via the ground state at ~1.2μm, with threshold current density of 2.1kA/cm[superscript 2] and maximum output power of 16mW. These results are significantly better than previously reported values for this quantum-dot system.