3 resultados para Crime scenes

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research reported here concerns the principles used to automatically generate three-dimensional representations from line drawings of scenes. The computer programs involved look at scenes which consist of polyhedra and which may contain shadows and various kinds of coincidentally aligned scene features. Each generated description includes information about edge shape (convex, concave, occluding, shadow, etc.), about the type of illumination for each region (illuminated, projected shadow, or oriented away from the light source), and about the spacial orientation of regions. The methods used are based on the labeling schemes of Huffman and Clowes; this research provides a considerable extension to their work and also gives theoretical explanations to the heuristic scene analysis work of Guzman, Winston, and others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a scheme for indoor place identification based on the recognition of global scene views. Scene views are encoded using a holistic representation that provides low-resolution spatial and spectral information. The holistic nature of the representation dispenses with the need to rely on specific objects or local landmarks and also renders it robust against variations in object configurations. We demonstrate the scheme on the problem of recognizing scenes in video sequences captured while walking through an office environment. We develop a method for distinguishing between 'diagnostic' and 'generic' views and also evaluate changes in system performances as a function of the amount of training data available and the complexity of the representation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human visual system is adept at detecting and encoding statistical regularities in its spatio-temporal environment. Here we report an unexpected failure of this ability in the context of perceiving inconsistencies in illumination distributions across a scene. Contrary to predictions from previous studies [Enns and Rensink, 1990; Sun and Perona, 1996a, 1996b, 1997], we find that the visual system displays a remarkable lack of sensitivity to illumination inconsistencies, both in experimental stimuli and in images of real scenes. Our results allow us to draw inferences regarding how the visual system encodes illumination distributions across scenes. Specifically, they suggest that the visual system does not verify the global consistency of locally derived estimates of illumination direction.