5 resultados para Cost projections
em Massachusetts Institute of Technology
Resumo:
The task of shape recovery from a motion sequence requires the establishment of correspondence between image points. The two processes, the matching process and the shape recovery one, are traditionally viewed as independent. Yet, information obtained during the process of shape recovery can be used to guide the matching process. This paper discusses the mutual relationship between the two processes. The paper is divided into two parts. In the first part we review the constraints imposed on the correspondence by rigid transformations and extend them to objects that undergo general affine (non rigid) transformation (including stretch and shear), as well as to rigid objects with smooth surfaces. In all these cases corresponding points lie along epipolar lines, and these lines can be recovered from a small set of corresponding points. In the second part of the paper we discuss the potential use of epipolar lines in the matching process. We present an algorithm that recovers the correspondence from three contour images. The algorithm was implemented and used to construct object models for recognition. In addition we discuss how epipolar lines can be used to solve the aperture problem.
Resumo:
In order to recognize an object in an image, we must determine the best transformation from object model to the image. In this paper, we show that for features from coplanar surfaces which undergo linear transformations in space, there exist projections invariant to the surface motions up to rotations in the image field. To use this property, we propose a new alignment approach to object recognition based on centroid alignment of corresponding feature groups. This method uses only a single pair of 2D model and data. Experimental results show the robustness of the proposed method against perturbations of feature positions.
Resumo:
We analyze a finite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to find an inventory policy and a pricing strategy maximizing expected profit over the finite horizon. We show that when the demand model is additive, the profit-to-go functions are k-concave and hence an (s,S,p) policy is optimal. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period. For more general demand functions, i.e., multiplicative plus additive functions, we demonstrate that the profit-to-go function is not necessarily k-concave and an (s,S,p) policy is not necessarily optimal. We introduce a new concept, the symmetric k-concave functions and apply it to provide a characterization of the optimal policy.
Resumo:
We analyze an infinite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are identically distributed random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to maximize expected discounted, or expected average profit over the infinite planning horizon. We show that a stationary (s,S,p) policy is optimal for both the discounted and average profit models with general demand functions. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period.
Resumo:
by John M. Barentine.