3 resultados para Cortical blebbing
em Massachusetts Institute of Technology
Resumo:
This paper sketches a hypothetical cortical architecture for visual 3D object recognition based on a recent computational model. The view-centered scheme relies on modules for learning from examples, such as Hyperbf-like networks. Such models capture a class of explanations we call Memory-Based Models (MBM) that contains sparse population coding, memory-based recognition, and codebooks of prototypes. Unlike the sigmoidal units of some artificial neural networks, the units of MBMs are consistent with the description of cortical neurons. We describe how an example of MBM may be realized in terms of cortical circuitry and biophysical mechanisms, consistent with psychophysical and physiological data.
Resumo:
I wish to propose a quite speculative new version of the grandmother cell theory to explain how the brain, or parts of it, may work. In particular, I discuss how the visual system may learn to recognize 3D objects. The model would apply directly to the cortical cells involved in visual face recognition. I will also outline the relation of our theory to existing models of the cerebellum and of motor control. Specific biophysical mechanisms can be readily suggested as part of a basic type of neural circuitry that can learn to approximate multidimensional input-output mappings from sets of examples and that is expected to be replicated in different regions of the brain and across modalities. The main points of the theory are: -the brain uses modules for multivariate function approximation as basic components of several of its information processing subsystems. -these modules are realized as HyperBF networks (Poggio and Girosi, 1990a,b). -HyperBF networks can be implemented in terms of biologically plausible mechanisms and circuitry. The theory predicts a specific type of population coding that represents an extension of schemes such as look-up tables. I will conclude with some speculations about the trade-off between memory and computation and the evolution of intelligence.
Resumo:
This paper presents a model for the general flow in the neocortex. The basic process, called "sequence-seeking," is a search for a sequence of mappings or transformations, linking source and target representations. The search is bi-directional, "bottom-up" as well as "top-down," and it explores in parallel a large numbe rof alternative sequences. This operation is implemented in a structure termed "counter streams," in which multiple sequences are explored along two separate, complementary pathways which seeking to meet. The first part of the paper discusses the general sequence-seeking scheme and a number of related processes, such as the learning of successful sequences, context effects, and the use of "express lines" and partial matches. The second part discusses biological implications of the model in terms of connections within and between cortical areas. The model is compared with existing data, and a number of new predictions are proposed.