3 resultados para Conveying machinery
em Massachusetts Institute of Technology
Resumo:
The rotary valve is a widely used mechanical device in many solids-handling industrial processes. However, it may also be responsible for most of the attrition effects occurring in a typical process. In this study, the attrition effects occurring in a rotary valve operating as a stand-alone device and as part of a pneumatic conveying system were investigated. In the former case granular attrition was carried out at three different rotary valve speeds and the experimental results obtained were found to be in good agreement with the Gwyn correlation. In the latter case three typical air flow rates were used in the pneumatic conveying system. The size distribution of the attrition product obtained at the lowest air flow rate used was not adequately described by the Gwyn correlation. The attrition process and mechanisms involved were analysed and the minimum size of the attrition product obtained from both modes of operations was found to be similar.
Resumo:
Expert systems are too slow. This work attacks that problem by speeding up a useful system component that remembers facts and tracks down simple consequences. The redesigned component can assimilate new facts more quickly because it uses a compact, grammar-based internal representation to deal with whole classes of equivalent expressions at once. It can support faster hypothetical reasoning because it remembers the consequences of several assumption sets at once. The new design is targeted for situations in which many of the stored facts are equalities. The deductive machinery considered here supplements stored premises with simple new conclusions. The stored premises include permanently asserted facts and temporarily adopted assumptions. The new conclusions are derived by substituting equals for equals and using the properties of the logical connectives AND, Or, and NOT. The deductive system provides supporting premises for its derived conclusions. Reasoning that involves quantifiers is beyond the scope of its limited and automatic operation. The expert system of which the reasoning system is a component is expected to be responsible for overall control of reasoning.
Resumo:
A prototype presentation system base is described. It offers mechanisms, tools, and ready-made parts for building user interfaces. A general user interface model underlies the base, organized around the concept of a presentation: a visible text or graphic for conveying information. Te base and model emphasize domain independence and style independence, to apply to the widest possible range of interfaces. The primitive presentation system model treats the interface as a system of processes maintaining a semantic relation between an application data base and a presentation data base, the symbolic screen description containing presentations. A presenter continually updates the presentation data base from the application data base. The user manipulates presentations with a presentation editor. A recognizer translates the user's presentation manipulation into application data base commands. The primitive presentation system can be extended to model more complex systems by attaching additional presentation systems. In order to illustrate the model's generality and descriptive capabilities, extended model structures for several existing user interfaces are discussed. The base provides support for building the application and presentation data bases, linked together into a single, uniform network, including descriptions of classes of objects as we as the objects themselves. The base provides an initial presentation data base network graphics to continually display it, and editing functions. A variety of tools and mechanisms help create and control presenters and recognizers. To demonstrate the base's utility, three interfaces to an operating system were constructed, embodying different styles: icons, menu, and graphical annotation.