1 resultado para Convergence et divergence dialectales
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (4)
- Adam Mickiewicz University Repository (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (102)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (20)
- Aston University Research Archive (5)
- B-Digital - Universidade Fernando Pessoa - Portugal (4)
- Biblioteca Digital da Câmara dos Deputados (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital de la Universidad Católica Argentina (12)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Boston University Digital Common (8)
- Brock University, Canada (2)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (43)
- CentAUR: Central Archive University of Reading - UK (13)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (79)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Cornell: DigitalCommons@ILR (6)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (59)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (11)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (30)
- Indian Institute of Science - Bangalore - Índia (51)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (7)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (10)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (105)
- Queensland University of Technology - ePrints Archive (157)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad Nacional Agraria (7)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- Repositorio Institucional Universidad de Medellín (1)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (1)
- Université de Montréal (3)
- Université de Montréal, Canada (82)
- Université Laval Mémoires et thèses électroniques (4)
- University of Michigan (1)
- University of Queensland eSpace - Australia (1)
Resumo:
The Expectation-Maximization (EM) algorithm is an iterative approach to maximum likelihood parameter estimation. Jordan and Jacobs (1993) recently proposed an EM algorithm for the mixture of experts architecture of Jacobs, Jordan, Nowlan and Hinton (1991) and the hierarchical mixture of experts architecture of Jordan and Jacobs (1992). They showed empirically that the EM algorithm for these architectures yields significantly faster convergence than gradient ascent. In the current paper we provide a theoretical analysis of this algorithm. We show that the algorithm can be regarded as a variable metric algorithm with its searching direction having a positive projection on the gradient of the log likelihood. We also analyze the convergence of the algorithm and provide an explicit expression for the convergence rate. In addition, we describe an acceleration technique that yields a significant speedup in simulation experiments.