4 resultados para Controlled mating

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior research has led to the development of input command shapers that can reduce residual vibration in single- or multiple-mode flexible systems. We present a method for the development of multiple-mode shapers which are simpler to implement and produce smaller response delays than previous designs. An MIT / NASA experimental flexible structure, MACE, is employed as a test article for the validation of the new shaping method. We examine the results of tests conducted on simulations of MACE. The new shapers are shown to be effective in suppressing multiple-mode vibration, even in the presence of mild kinematic and dynamic non-linearities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research in force control has focused on the choice of appropriate servo implementation without corresponding regard to the choice of mechanical hardware. This report analyzes the effect of mechanical properties such as contact compliance, actuator-to-joint compliance, torque ripple, and highly nonlinear dry friction in the transmission mechanisms of a manipulator. A set of requisites for high performance then guides the development of mechanical-design and servo strategies for improved performance. A single-degree-of-freedom transmission testbed was constructed that confirms the predicted effect of Coulomb friction on robustness; design and construction of a cable-driven, four-degree-of- freedom, "whole-arm" manipulator illustrates the recommended design strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of machines that exhibit flexibility becomes important when designers attempt to push the state of the art with faster, lighter machines. Three steps are necessary for the control of a flexible planet. First, a good model of the plant must exist. Second, a good controller must be designed. Third, inputs to the controller must be constructed using knowledge of the system dynamic response. There is a great deal of literature pertaining to modeling and control but little dealing with the shaping of system inputs. Chapter 2 examines two input shaping techniques based on frequency domain analysis. The first involves the use of the first deriviate of a gaussian exponential as a driving function template. The second, acasual filtering, involves removal of energy from the driving functions at the resonant frequencies of the system. Chapter 3 presents a linear programming technique for generating vibration-reducing driving functions for systems. Chapter 4 extends the results of the previous chapter by developing a direct solution to the new class of driving functions. A detailed analysis of the new technique is presented from five different perspectives and several extensions are presented. Chapter 5 verifies the theories of the previous two chapters with hardware experiments. Because the new technique resembles common signal filtering, chapter 6 compares the new approach to eleven standard filters. The new technique will be shown to result in less residual vibrations, have better robustness to system parameter uncertainty, and require less computation than other currently used shaping techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compliant motion occurs when the manipulator position is constrained by the task geometry. Compliant motion may be produced either by a passive mechanical compliance built in to the manipulator, or by an active compliance implemented in the control servo loop. The second method, called force control, is the subject of this report. In particular, this report presents a theory of force control based on formal models of the manipulator, and the task geometry. The ideal effector is used to model the manipulator, and the task geometry is modeled by the ideal surface, which is the locus of all positions accessible to the ideal effector. Models are also defined for the goal trajectory, position control, and force control.