3 resultados para Contrast-enhanced
em Massachusetts Institute of Technology
Resumo:
Enhanced reality visualization is the process of enhancing an image by adding to it information which is not present in the original image. A wide variety of information can be added to an image ranging from hidden lines or surfaces to textual or iconic data about a particular part of the image. Enhanced reality visualization is particularly well suited to neurosurgery. By rendering brain structures which are not visible, at the correct location in an image of a patient's head, the surgeon is essentially provided with X-ray vision. He can visualize the spatial relationship between brain structures before he performs a craniotomy and during the surgery he can see what's under the next layer before he cuts through. Given a video image of the patient and a three dimensional model of the patient's brain the problem enhanced reality visualization faces is to render the model from the correct viewpoint and overlay it on the original image. The relationship between the coordinate frames of the patient, the patient's internal anatomy scans and the image plane of the camera observing the patient must be established. This problem is closely related to the camera calibration problem. This report presents a new approach to finding this relationship and develops a system for performing enhanced reality visualization in a surgical environment. Immediately prior to surgery a few circular fiducials are placed near the surgical site. An initial registration of video and internal data is performed using a laser scanner. Following this, our method is fully automatic, runs in nearly real-time, is accurate to within a pixel, allows both patient and camera motion, automatically corrects for changes to the internal camera parameters (focal length, focus, aperture, etc.) and requires only a single image.
Resumo:
Baylis & Driver (Nature Neuroscience, 2001) have recently presented data on the response of neurons in macaque inferotemporal cortex (IT) to various stimulus transformations. They report that neurons can generalize over contrast and mirror reversal, but not over figure-ground reversal. This finding is taken to demonstrate that ``the selectivity of IT neurons is not determined simply by the distinctive contours in a display, contrary to simple edge-based models of shape recognition'', citing our recently presented model of object recognition in cortex (Riesenhuber & Poggio, Nature Neuroscience, 1999). In this memo, I show that the main effects of the experiment can be obtained by performing the appropriate simulations in our simple feedforward model. This suggests for IT cell tuning that the possible contributions of explicit edge assignment processes postulated in (Baylis & Driver, 2001) might be smaller than expected.
Resumo:
It is proposed that subjective contours are an artifact of the perception of natural three-dimensional surfaces. A recent theory of surface interpolation implies that "subjective surfaces" are constructed in the visual system by interpolation between three-dimensional values arising from interpretation of a variety of surface cues. We show that subjective surfaces can take any form, including singly and doubly curved surfaces, as well as the commonly discussed fronto-parallel planes. In addition, it is necessary in the context of computational vision to make explicit the discontinuities, both in depth and in surface orientation, in the surfaces constructed by interpolation. It is proposed that subjective surfaces and subjective contours are demonstrated. The role played by figure completion and enhanced brightness contrast in the determination of subjective surfaces is discussed. All considerations of surface perception apply equally to subjective surfaces.