4 resultados para Contour Extraction

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weighted graph matching is a good way to align a pair of shapes represented by a set of descriptive local features; the set of correspondences produced by the minimum cost of matching features from one shape to the features of the other often reveals how similar the two shapes are. However, due to the complexity of computing the exact minimum cost matching, previous algorithms could only run efficiently when using a limited number of features per shape, and could not scale to perform retrievals from large databases. We present a contour matching algorithm that quickly computes the minimum weight matching between sets of descriptive local features using a recently introduced low-distortion embedding of the Earth Mover's Distance (EMD) into a normed space. Given a novel embedded contour, the nearest neighbors in a database of embedded contours are retrieved in sublinear time via approximate nearest neighbors search. We demonstrate our shape matching method on databases of 10,000 images of human figures and 60,000 images of handwritten digits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information representation is a critical issue in machine vision. The representation strategy in the primitive stages of a vision system has enormous implications for the performance in subsequent stages. Existing feature extraction paradigms, like edge detection, provide sparse and unreliable representations of the image information. In this thesis, we propose a novel feature extraction paradigm. The features consist of salient, simple parts of regions bounded by zero-crossings. The features are dense, stable, and robust. The primary advantage of the features is that they have abstract geometric attributes pertaining to their size and shape. To demonstrate the utility of the feature extraction paradigm, we apply it to passive navigation. We argue that the paradigm is applicable to other early vision problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of using image contours to infer the shapes and orientations of surfaces is treated as a problem of statistical estimation. The basis for solving this problem lies in an understanding of the geometry of contour formation, coupled with simple statistical models of the contour generating process. This approach is first applied to the special case of surfaces known to be planar. The distortion of contour shape imposed by projection is treated as a signal to be estimated, and variations of non-projective origin are treated as noise. The resulting method is then extended to the estimation of curved surfaces, and applied successfully to natural images. Next, the geometric treatment is further extended by relating countour curvature to surface curvature, using cast shadows as a model for contour generation. This geometric relation, combined with a statistical model, provides a measure of goodness-of-fit between a surface and an image contour. The goodness-of-fit measure is applied to the problem of establishing registration between an image and a surface model. Finally, the statistical estimation strategy is experimentally compared to human perception of orientation: human observers' judgements of tilt correspond closely to the estimates produced by the planar strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visual analysis of surface shape from texture and surface contour is treated within a computational framework. The aim of this study is to determine valid constraints that are sufficient to allow surface orientation and distance (up to a multiplicative constant) to be computed from the image of surface texture and of surface contours.