5 resultados para Constructive heuristics
em Massachusetts Institute of Technology
Resumo:
The central thesis of this report is that human language is NP-complete. That is, the process of comprehending and producing utterances is bounded above by the class NP, and below by NP-hardness. This constructive complexity thesis has two empirical consequences. The first is to predict that a linguistic theory outside NP is unnaturally powerful. The second is to predict that a linguistic theory easier than NP-hard is descriptively inadequate. To prove the lower bound, I show that the following three subproblems of language comprehension are all NP-hard: decide whether a given sound is possible sound of a given language; disambiguate a sequence of words; and compute the antecedents of pronouns. The proofs are based directly on the empirical facts of the language user's knowledge, under an appropriate idealization. Therefore, they are invariant across linguistic theories. (For this reason, no knowledge of linguistic theory is needed to understand the proofs, only knowledge of English.) To illustrate the usefulness of the upper bound, I show that two widely-accepted analyses of the language user's knowledge (of syntactic ellipsis and phonological dependencies) lead to complexity outside of NP (PSPACE-hard and Undecidable, respectively). Next, guided by the complexity proofs, I construct alternate linguisitic analyses that are strictly superior on descriptive grounds, as well as being less complex computationally (in NP). The report also presents a new framework for linguistic theorizing, that resolves important puzzles in generative linguistics, and guides the mathematical investigation of human language.
Resumo:
The work described in this thesis began as an inquiry into the nature and use of optimization programs based on "genetic algorithms." That inquiry led, eventually, to three powerful heuristics that are broadly applicable in gradient-ascent programs: First, remember the locations of local maxima and restart the optimization program at a place distant from previously located local maxima. Second, adjust the size of probing steps to suit the local nature of the terrain, shrinking when probes do poorly and growing when probes do well. And third, keep track of the directions of recent successes, so as to probe preferentially in the direction of most rapid ascent. These algorithms lie at the core of a novel optimization program that illustrates the power to be had from deploying them together. The efficacy of this program is demonstrated on several test problems selected from a variety of fields, including De Jong's famous test-problem suite, the traveling salesman problem, the problem of coordinate registration for image guided surgery, the energy minimization problem for determining the shape of organic molecules, and the problem of assessing the structure of sedimentary deposits using seismic data.
Resumo:
In this thesis I present a language for instructing a sheet of identically-programmed, flexible, autonomous agents (``cells'') to assemble themselves into a predetermined global shape, using local interactions. The global shape is described as a folding construction on a continuous sheet, using a set of axioms from paper-folding (origami). I provide a means of automatically deriving the cell program, executed by all cells, from the global shape description. With this language, a wide variety of global shapes and patterns can be synthesized, using only local interactions between identically-programmed cells. Examples include flat layered shapes, all plane Euclidean constructions, and a variety of tessellation patterns. In contrast to approaches based on cellular automata or evolution, the cell program is directly derived from the global shape description and is composed from a small number of biologically-inspired primitives: gradients, neighborhood query, polarity inversion, cell-to-cell contact and flexible folding. The cell programs are robust, without relying on regular cell placement, global coordinates, or synchronous operation and can tolerate a small amount of random cell death. I show that an average cell neighborhood of 15 is sufficient to reliably self-assemble complex shapes and geometric patterns on randomly distributed cells. The language provides many insights into the relationship between local and global descriptions of behavior, such as the advantage of constructive languages, mechanisms for achieving global robustness, and mechanisms for achieving scale-independent shapes from a single cell program. The language suggests a mechanism by which many related shapes can be created by the same cell program, in the manner of D'Arcy Thompson's famous coordinate transformations. The thesis illuminates how complex morphology and pattern can emerge from local interactions, and how one can engineer robust self-assembly.
Resumo:
In this paper we consider the problem of approximating a function belonging to some funtion space Φ by a linear comination of n translates of a given function G. Ussing a lemma by Jones (1990) and Barron (1991) we show that it is possible to define function spaces and functions G for which the rate of convergence to zero of the erro is 0(1/n) in any number of dimensions. The apparent avoidance of the "curse of dimensionality" is due to the fact that these function spaces are more and more constrained as the dimension increases. Examples include spaces of the Sobolev tpe, in which the number of weak derivatives is required to be larger than the number of dimensions. We give results both for approximation in the L2 norm and in the Lc norm. The interesting feature of these results is that, thanks to the constructive nature of Jones" and Barron"s lemma, an iterative procedure is defined that can achieve this rate.
Resumo:
At the time of a customer order, the e-tailer assigns the order to one or more of its order fulfillment centers, and/or to drop shippers, so as to minimize procurement and transportation costs, based on the available current information. However this assignment is necessarily myopic as it cannot account for all future events, such as subsequent customer orders or inventory replenishments. We examine the potential benefits from periodically re-evaluating these real-time order-assignment decisions. We construct near-optimal heuristics for the re-assignment for a large set of customer orders with the objective to minimize the total number of shipments. We investigate how best to implement these heuristics for a rolling horizon, and discuss the effect of demand correlation, customer order size, and the number of customer orders on the nature of the heuristics. Finally, we present potential saving opportunities by testing the heuristics on sets of order data from a major e-tailer.