3 resultados para Connell

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Behavior Language is a rule-based real-time parallel robot programming language originally based on ideas from [Brooks 86], [Connell 89], and [Maes 89]. It compiles into a modified and extended version of the subsumption architecture [Brooks 86] and thus has backends for a number of processors including the Motorola 68000 and 68HCll, the Hitachi 6301, and Common Lisp. Behaviors are groups of rules which are activatable by a number of different schemes. There are no shared data structures across behaviors, but instead all communication is by explicit message passing. All rules are assumed to run in parallel and asynchronously. It includes the earlier notions of inhibition and suppression, along with a number of mechanisms for spreading of activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of an implemented system for learning structural prototypes from grey-scale images. We show how to divide an object into subparts and how to encode the properties of these subparts and the relations between them. We discuss the importance of hierarchy and grouping in representing objects and show how a notion of visual similarities can be embedded in the description language. Finally we exhibit a learning algorithm that forms class models from the descriptions produced and uses these models to recognize new members of the class.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes a working autonomous mobile robot whose only goal is to collect and return empty soda cans. It operates in an unmodified office environment occupied by moving people. The robot is controlled by a collection of over 40 independent "behaviors'' distributed over a loosely coupled network of 24 processors. Together this ensemble helps the robot locate cans with its laser rangefinder, collect them with its on-board manipulator, and bring them home using a compass and an array of proximity sensors. We discuss the advantages of using such a multi-agent control system and show how to decompose the required tasks into component activities. We also examine the benefits and limitations of spatially local, stateless, and independent computation by the agents.