4 resultados para Conjugated copolymers

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, application of fluorescent conjugated polymers to sense chemical and biological analytes has received much attention owing to its technological significance. Water soluble conjugated polymers are interesting towards the developing sensors for biomolecules. In this present contribution, we describe the syntheses and characterization of a series of water soluble conjugated polymers with sulfonic acid groups in the side chain. Such anionic conjugated polymers are designed to interact with biomolecules such as cytochrome-C. All polymers are water soluble and showed strong blue emission. Significant quenching of the fluorescence from our functionalized PPP was observed upon addition of viologen derivatives or cytochrome -C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotinylated and non-biotinylated copolymers of ethylene oxide (EO) and 2-(diethylamino)ethyl methacrylate (DEAEMA) were synthesized by the atom transfer radical polymerization technique (ATRP). The chemical compositions of the copolymers as determined by NMR are represented by PEO₁₁₃PDEAEMA₇₀ and biotin-PEO₁₀₄PDEAEMA₉₃ respectively. The aggregation behavior of these polymers in aqueous solutions at different pHs and ionic strengths was studied using a combination of potentiometric titration, dynamic light scattering (DLS), static light scattering (SLS), and transmission electron microscopy (TEM). Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers form micelles at high pH with hydrodynamic radii (Rh) of about 19 and 23 nm, respectively. At low pH, the copolymers are dispersed as unimers in solution with Rh of about 6-7 nm. However, at a physiological salt concentration (cs) of about 0.16M NaCl and a pH of 7-8, the copolymers form large loosely packed Guassian chains, which were not present at the low cs of 0.001M NaCl. The critical micelle concentrations (CMC) and the cytotoxicity of the copolymers were investigated to determine a suitable polymer concentration range for future biological applications. Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers possess identical CMC values of about 0.0023 mg/g, while the cytotoxicity test indicated that the copolymers are not toxic up to 0.05mg/g (> 83% cell survival at this concentration).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(acrylic acid) (PAA) was grafted onto both termini of Pluronic F87 (PEO₆₇-PPO₃₉-PEO₆₇) via atom transfer radical polymerization to produce a novel muco-adhesive block copolymer PAA₈₀-b-F₈₇-b-PAA₈₀. It was observed that PAA₈₀-F₈₇-PAA₈₀ forms stable complexes with weakly basic anti-cancer drug, Doxorubicin. Thermodynamic changes due to the drug binding to the copolymer were assessed at different pH by isothermal titration calorimetry (ITC). The formation of the polymer/drug complexes was studied by turbidimetric titration and dynamic light scattering. Doxorubicin and PAA-b-F87-b-PAA block copolymer are found to interact strongly in aqueous solution via non-covalent interactions over a wide pH range. At pH>4.35, drug binding is due to electrostatic interactions. Hydrogen-bond also plays a role in the stabilization of the PAA₈₀-F₈₇-PAA₈₀/DOX complex. At pH 7.4 (α=0.8), the size and stability of polymer/drug complex depend strongly on the doxorubicin concentration. When CDOX <0.13mM, the PAA₈₀-F₈₇-PAA₈₀ copolymer forms stable inter-chain complexes with DOX (110 ~ 150 nm). When CDOX >0.13mM, as suggested by the light scattering result, the reorganization of the polymer/drug complex is believed to occur. With further addition of DOX (CDOX >0.34mM), sharp increase in the turbidity indicates the formation of large aggregates, followed by phase separation. The onset of a sharp enthalpy increase corresponds to the formation of a stoichiometric complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A targeted, stimuli-responsive, polymeric drug delivery vehicle is being developed in our lab to help alleviate severe side-effects caused by narrow therapeutic window drugs. Targeting specific cell types or organs via proteins, specifically, lectin-mediated targeting holds potential due to the high specificity and affinity of receptor-ligand interactions, rapid internalization, and relative ease of processing. Dextran, a commercially available, biodegradable polymer has been conjugated to doxorubicin and galactosamine to target hepatocytes in a three-step, one-pot synthesis. The loading of doxorubicin and galactose on the conjugates was determined by absorbance at 485 nm and elemental analysis, respectively. Conjugation efficiency based on the amount loaded of each reactant varies from 20% to 50% for doxorubicin and from 2% to 20% for galactosamine. Doxorubicin has also been attached to dextran through an acid-labile hydrazide bond. Doxorubicin acts by intercalating with DNA in the nuclei of cells. The fluorescence of doxorubicin is quenched when it binds to DNA. This allows a fluorescence-based cell-free assay to evaluate the efficacy of the polymer conjugates where we measure the fluorescence of doxorubicin and the conjugates in increasing concentrations of calf thymus DNA. Fluorescence quenching indicates that our conjugates can bind to DNA. The degree of binding increases with polymer molecular weight and substitution of doxorubicin. In cell culture experiments with hepatocytes, the relative uptake of polymer conjugates was evaluated using flow cytometry, and the killing efficiency was determined using the MTT cell proliferation assay. We have found that conjugate uptake is much lower than that of free doxorubicin. Lower uptake of conjugates may increase the maximum dose of drug tolerated by the body. Also, non-galactosylated conjugate uptake is lower than that of the galactosylated conjugate. Microscopy indicates that doxorubicin localizes almost exclusively at the nucleus, whereas the conjugates are present throughout the cell. Doxorubicin linked to dextran through a hydrazide bond was used to achieve improved killing efficiency. Following uptake, the doxorubicin dissociates from the polymer in an endosomal compartment and diffuses to the nucleus. The LC₅₀ of covalently linked doxorubicin is 7.4 μg/mL, whereas that of hydrazide linked doxorubicin is 4.4 μg/mL.