1 resultado para Conditional personal non-cure rate
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (10)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Boston University Digital Common (2)
- Brock University, Canada (8)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (52)
- Center for Jewish History Digital Collections (5)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (27)
- Cochin University of Science & Technology (CUSAT), India (25)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (8)
- DigitalCommons@The Texas Medical Center (2)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Greenwich Academic Literature Archive - UK (7)
- Helda - Digital Repository of University of Helsinki (160)
- Indian Institute of Science - Bangalore - Índia (63)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (60)
- Queensland University of Technology - ePrints Archive (146)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (63)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (6)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universita di Parma (1)
- Universitat de Girona, Spain (6)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (37)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (7)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
We consider an online learning scenario in which the learner can make predictions on the basis of a fixed set of experts. The performance of each expert may change over time in a manner unknown to the learner. We formulate a class of universal learning algorithms for this problem by expressing them as simple Bayesian algorithms operating on models analogous to Hidden Markov Models (HMMs). We derive a new performance bound for such algorithms which is considerably simpler than existing bounds. The bound provides the basis for learning the rate at which the identity of the optimal expert switches over time. We find an analytic expression for the a priori resolution at which we need to learn the rate parameter. We extend our scalar switching-rate result to models of the switching-rate that are governed by a matrix of parameters, i.e. arbitrary homogeneous HMMs. We apply and examine our algorithm in the context of the problem of energy management in wireless networks. We analyze the new results in the framework of Information Theory.