5 resultados para Concurrency
em Massachusetts Institute of Technology
Resumo:
The actor message-passing model of concurrent computation has inspired new ideas in the areas of knowledge-based systems, programming languages and their semantics, and computer systems architecture. The model itself grew out of computer languages such as Planner, Smalltalk, and Simula, and out of the use of continuations to interpret imperative constructs within A-calculus. The mathematical content of the model has been developed by Carl Hewitt, Irene Greif, Henry Baker, and Giuseppe Attardi. This thesis extends and unifies their work through the following observations. The ordering laws postulated by Hewitt and Baker can be proved using a notion of global time. The most general ordering laws are in fact equivalent to an axiom of realizability in global time. Independence results suggest that some notion of global time is essential to any model of concurrent computation. Since nondeterministic concurrency is more fundamental than deterministic sequential computation, there may be no need to take fixed points in the underlying domain of a power domain. Power domains built from incomplete domains can solve the problem of providing a fixed point semantics for a class of nondeterministic programming languages in which a fair merge can be written. The event diagrams of Greif's behavioral semantics, augmented by Baker's pending events, form an incomplete domain. Its power domain is the semantic domain in which programs written in actor-based languages are assigned meanings. This denotational semantics is compatible with behavioral semantics. The locality laws postulated by Hewitt and Baker may be proved for the semantics of an actor-based language. Altering the semantics slightly can falsify the locality laws. The locality laws thus constrain what counts as an actor semantics.
Resumo:
A foundational model of concurrency is developed in this thesis. We examine issues in the design of parallel systems and show why the actor model is suitable for exploiting large-scale parallelism. Concurrency in actors is constrained only by the availability of hardware resources and by the logical dependence inherent in the computation. Unlike dataflow and functional programming, however, actors are dynamically reconfigurable and can model shared resources with changing local state. Concurrency is spawned in actors using asynchronous message-passing, pipelining, and the dynamic creation of actors. This thesis deals with some central issues in distributed computing. Specifically, problems of divergence and deadlock are addressed. For example, actors permit dynamic deadlock detection and removal. The problem of divergence is contained because independent transactions can execute concurrently and potentially infinite processes are nevertheless available for interaction.
Resumo:
Computational models are arising is which programs are constructed by specifying large networks of very simple computational devices. Although such models can potentially make use of a massive amount of concurrency, their usefulness as a programming model for the design of complex systems will ultimately be decided by the ease in which such networks can be programmed (constructed). This thesis outlines a language for specifying computational networks. The language (AFL-1) consists of a set of primitives, ad a mechanism to group these elements into higher level structures. An implementation of this language runs on the Thinking Machines Corporation, Connection machine. Two significant examples were programmed in the language, an expert system (CIS), and a planning system (AFPLAN). These systems are explained and analyzed in terms of how they compare with similar systems written in conventional languages.
Resumo:
This thesis describes Optimist, an optimizing compiler for the Concurrent Smalltalk language developed by the Concurrent VLSI Architecture Group. Optimist compiles Concurrent Smalltalk to the assembly language of the Message-Driven Processor (MDP). The compiler includes numerous optimization techniques such as dead code elimination, dataflow analysis, constant folding, move elimination, concurrency analysis, duplicate code merging, tail forwarding, use of register variables, as well as various MDP-specific optimizations in the code generator. The MDP presents some unique challenges and opportunities for compilation. Due to the MDP's small memory size, it is critical that the size of the generated code be as small as possible. The MDP is an inherently concurrent processor with efficient mechanisms for sending and receiving messages; the compiler takes advantage of these mechanisms. The MDP's tagged architecture allows very efficient support of object-oriented languages such as Concurrent Smalltalk. The initial goals for the MDP were to have the MDP execute about twenty instructions per method and contain 4096 words of memory. This compiler shows that these goals are too optimistic -- most methods are longer, both in terms of code size and running time. Thus, the memory size of the MDP should be increased.
Resumo:
Fine-grained parallel machines have the potential for very high speed computation. To program massively-concurrent MIMD machines, programmers need tools for managing complexity. These tools should not restrict program concurrency. Concurrent Aggregates (CA) provides multiple-access data abstraction tools, Aggregates, which can be used to implement abstractions with virtually unlimited potential for concurrency. Such tools allow programmers to modularize programs without reducing concurrency. I describe the design, motivation, implementation and evaluation of Concurrent Aggregates. CA has been used to construct a number of application programs. Multi-access data abstractions are found to be useful in constructing highly concurrent programs.