2 resultados para Concept Map

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report explores the relation between image intensity and object shape. It is shown that image intensity is related to surface orientation and that a variation in image intensity is related to surface curvature. Computational methods are developed which use the measured intensity variation across surfaces of smooth objects to determine surface orientation. In general, surface orientation is not determined locally by the intensity value recorded at each image point. Tools are needed to explore the problem of determining surface orientation from image intensity. The notion of gradient space , popularized by Huffman and Mackworth, is used to represent surface orientation. The notion of a reflectance map, originated by Horn, is used to represent the relation between surface orientation image intensity. The image Hessian is defined and used to represent surface curvature. Properties of surface curvature are expressed as constraints on possible surface orientations corresponding to a given image point. Methods are presented which embed assumptions about surface curvature in algorithms for determining surface orientation from the intensities recorded in a single view. If additional images of the same object are obtained by varying the direction of incident illumination, then surface orientation is determined locally by the intensity values recorded at each image point. This fact is exploited in a new technique called photometric stereo. The visual inspection of surface defects in metal castings is considered. Two casting applications are discussed. The first is the precision investment casting of turbine blades and vanes for aircraft jet engines. In this application, grain size is an important process variable. The existing industry standard for estimating the average grain size of metals is implemented and demonstrated on a sample turbine vane. Grain size can be computed form the measurements obtained in an image, once the foreshortening effects of surface curvature are accounted for. The second is the green sand mold casting of shuttle eyes for textile looms. Here, physical constraints inherent to the casting process translate into these constraints, it is necessary to interpret features of intensity as features of object shape. Both applications demonstrate that successful visual inspection requires the ability to interpret observed changes in intensity in the context of surface topography. The theoretical tools developed in this report provide a framework for this interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local belief propagation rules of the sort proposed by Pearl(1988) are guaranteed to converge to the optimal beliefs for singly connected networks. Recently, a number of researchers have empirically demonstrated good performance of these same algorithms on networks with loops, but a theoretical understanding of this performance has yet to be achieved. Here we lay the foundation for an understanding of belief propagation in networks with loops. For networks with a single loop, we derive ananalytical relationship between the steady state beliefs in the loopy network and the true posterior probability. Using this relationship we show a category of networks for which the MAP estimate obtained by belief update and by belief revision can be proven to be optimal (although the beliefs will be incorrect). We show how nodes can use local information in the messages they receive in order to correct the steady state beliefs. Furthermore we prove that for all networks with a single loop, the MAP estimate obtained by belief revisionat convergence is guaranteed to give the globally optimal sequence of states. The result is independent of the length of the cycle and the size of the statespace. For networks with multiple loops, we introduce the concept of a "balanced network" and show simulati.