3 resultados para Concavifiability of preferences
em Massachusetts Institute of Technology
Resumo:
The Saliency Network proposed by Shashua and Ullman is a well-known approach to the problem of extracting salient curves from images while performing gap completion. This paper analyzes the Saliency Network. The Saliency Network is attractive for several reasons. First, the network generally prefers long and smooth curves over short or wiggly ones. While computing saliencies, the network also fills in gaps with smooth completions and tolerates noise. Finally, the network is locally connected, and its size is proportional to the size of the image. Nevertheless, our analysis reveals certain weaknesses with the method. In particular, we show cases in which the most salient element does not lie on the perceptually most salient curve. Furthermore, in some cases the saliency measure changes its preferences when curves are scaled uniformly. Also, we show that for certain fragmented curves the measure prefers large gaps over a few small gaps of the same total size. In addition, we analyze the time complexity required by the method. We show that the number of steps required for convergence in serial implementations is quadratic in the size of the network, and in parallel implementations is linear in the size of the network. We discuss problems due to coarse sampling of the range of possible orientations. We show that with proper sampling the complexity of the network becomes cubic in the size of the network. Finally, we consider the possibility of using the Saliency Network for grouping. We show that the Saliency Network recovers the most salient curve efficiently, but it has problems with identifying any salient curve other than the most salient one.
Resumo:
The dream of pervasive computing is slowly becoming a reality. A number of projects around the world are constantly contributing ideas and solutions that are bound to change the way we interact with our environments and with one another. An essential component of the future is a software infrastructure that is capable of supporting interactions on scales ranging from a single physical space to intercontinental collaborations. Such infrastructure must help applications adapt to very diverse environments and must protect people's privacy and respect their personal preferences. In this paper we indicate a number of limitations present in the software infrastructures proposed so far (including our previous work). We then describe the framework for building an infrastructure that satisfies the abovementioned criteria. This framework hinges on the concepts of delegation, arbitration and high-level service discovery. Components of our own implementation of such an infrastructure are presented.
Resumo:
The image comparison operation ??sessing how well one image matches another ??rms a critical component of many image analysis systems and models of human visual processing. Two norms used commonly for this purpose are L1 and L2, which are specific instances of the Minkowski metric. However, there is often not a principled reason for selecting one norm over the other. One way to address this problem is by examining whether one metric better captures the perceptual notion of image similarity than the other. With this goal, we examined perceptual preferences for images retrieved on the basis of the L1 versus the L2 norm. These images were either small fragments without recognizable content, or larger patterns with recognizable content created via vector quantization. In both conditions the subjects showed a consistent preference for images matched using the L1 metric. These results suggest that, in the domain of natural images of the kind we have used, the L1 metric may better capture human notions of image similarity.