5 resultados para Computer Based Learning System

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MIT Prototype Educational Assessment System provides subjects and courses at MIT with the ability to perform online assessment. The system includes polices to handle harassment and electronic "flaming" while protecting privacy. Within these frameworks, individual courses and subjects can make their own policy decisions about such matters as to when assessments can occur, who can submit assessments, and how anonymous assessments are. By allowing assessment to take place continually and allowing both students and staff to participate, the system can provide a forum for the online discussion of subjects. Even in the case of scheduled assessments, the system can provide advantages over end-of-term assessment, since the scheduled assessments can occur several times during the semester, allowing subjects to identify and adjust those areas that could use improvement. Subjects can also develop customized questionnaires, perhaps in response to previous assessments, to suit their needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an image-based rendering system using algebraic relations between different views of an object. The system uses pictures of an object taken from known positions. Given three such images it can generate "virtual'' ones as the object would look from any position near the ones that the two input images were taken from. The extrapolation from the example images can be up to about 60 degrees of rotation. The system is based on the trilinear constraints that bind any three view so fan object. As a side result, we propose two new methods for camera calibration. We developed and used one of them. We implemented the system and tested it on real images of objects and faces. We also show experimentally that even when only two images taken from unknown positions are given, the system can be used to render the object from other view points as long as we have a good estimate of the internal parameters of the camera used and we are able to find good correspondence between the example images. In addition, we present the relation between these algebraic constraints and a factorization method for shape and motion estimation. As a result we propose a method for motion estimation in the special case of orthographic projection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For many types of learners one can compute the statistically 'optimal' way to select data. We review how these techniques have been used with feedforward neural networks. We then show how the same principles may be used to select data for two alternative, statistically-based learning architectures: mixtures of Gaussians and locally weighted regression. While the techniques for neural networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted regression are both efficient and accurate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artifacts made by humans, such as items of furniture and houses, exhibit an enormous amount of variability in shape. In this paper, we concentrate on models of the shapes of objects that are made up of fixed collections of sub-parts whose dimensions and spatial arrangement exhibit variation. Our goals are: to learn these models from data and to use them for recognition. Our emphasis is on learning and recognition from three-dimensional data, to test the basic shape-modeling methodology. In this paper we also demonstrate how to use models learned in three dimensions for recognition of two-dimensional sketches of objects.