10 resultados para Combinatorial Grassmannian
em Massachusetts Institute of Technology
Resumo:
In the principles-and-parameters model of language, the principle known as "free indexation'' plays an important part in determining the referential properties of elements such as anaphors and pronominals. This paper addresses two issues. (1) We investigate the combinatorics of free indexation. In particular, we show that free indexation must produce an exponential number of referentially distinct structures. (2) We introduce a compositional free indexation algorithm. We prove that the algorithm is "optimal.'' More precisely, by relating the compositional structure of the formulation to the combinatorial analysis, we show that the algorithm enumerates precisely all possible indexings, without duplicates.
Resumo:
A fundamental problem in artificial intelligence is obtaining coherent behavior in rule-based problem solving systems. A good quantitative measure of coherence is time behavior; a system that never, in retrospect, applied a rule needlessly is certainly coherent; a system suffering from combinatorial blowup is certainly behaving incoherently. This report describes a rule-based problem solving system for automatically writing and improving numerical computer programs from specifications. The specifications are in terms of "constraints" among inputs and outputs. The system has solved program synthesis problems involving systems of equations, determining that methods of successive approximation converge, transforming recursion to iteration, and manipulating power series (using differing organizations, control structures, and argument-passing techniques).
Resumo:
This thesis describes some aspects of a computer system for doing medical diagnosis in the specialized field of kidney disease. Because such a system faces the spectre of combinatorial explosion, this discussion concentrates on heuristics which control the number of concurrent hypotheses and efficient "compiled" representations of medical knowledge. In particular, the differential diagnosis of hematuria (blood in the urine) is discussed in detail. A protocol of a simulated doctor/patient interaction is presented and analyzed to determine the crucial structures and processes involved in the diagnosis procedure. The data structure proposed for representing medical information revolves around elementary hypotheses which are activated when certain disposing of findings, activating hypotheses, evaluating hypotheses locally and combining hypotheses globally is examined for its heuristic implications. The thesis attempts to fit the problem of medical diagnosis into the framework of other Artifcial Intelligence problems and paradigms and in particular explores the notions of pure search vs. heuristic methods, linearity and interaction, local vs. global knowledge and the structure of hypotheses within the world of kidney disease.
Resumo:
The constraint paradigm is a model of computation in which values are deduced whenever possible, under the limitation that deductions be local in a certain sense. One may visualize a constraint 'program' as a network of devices connected by wires. Data values may flow along the wires, and computation is performed by the devices. A device computes using only locally available information (with a few exceptions), and places newly derived values on other, locally attached wires. In this way computed values are propagated. An advantage of the constraint paradigm (not unique to it) is that a single relationship can be used in more than one direction. The connections to a device are not labelled as inputs and outputs; a device will compute with whatever values are available, and produce as many new values as it can. General theorem provers are capable of such behavior, but tend to suffer from combinatorial explosion; it is not usually useful to derive all the possible consequences of a set of hypotheses. The constraint paradigm places a certain kind of limitation on the deduction process. The limitations imposed by the constraint paradigm are not the only one possible. It is argued, however, that they are restrictive enough to forestall combinatorial explosion in many interesting computational situations, yet permissive enough to allow useful computations in practical situations. Moreover, the paradigm is intuitive: It is easy to visualize the computational effects of these particular limitations, and the paradigm is a natural way of expressing programs for certain applications, in particular relationships arising in computer-aided design. A number of implementations of constraint-based programming languages are presented. A progression of ever more powerful languages is described, complete implementations are presented and design difficulties and alternatives are discussed. The goal approached, though not quite reached, is a complete programming system which will implicitly support the constraint paradigm to the same extent that LISP, say, supports automatic storage management.
Resumo:
A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.
Resumo:
When triangulating a belief network we aim to obtain a junction tree of minimum state space. Searching for the optimal triangulation can be cast as a search over all the permutations of the network's vaeriables. Our approach is to embed the discrete set of permutations in a convex continuous domain D. By suitably extending the cost function over D and solving the continous nonlinear optimization task we hope to obtain a good triangulation with respect to the aformentioned cost. In this paper we introduce an upper bound to the total junction tree weight as the cost function. The appropriatedness of this choice is discussed and explored by simulations. Then we present two ways of embedding the new objective function into continuous domains and show that they perform well compared to the best known heuristic.
Resumo:
We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.
Resumo:
This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.
Resumo:
Synechocystis PCC 6803 is a photosynthetic bacterium that has the potential to make bioproducts from carbon dioxide and light. Biochemical production from photosynthetic organisms is attractive because it replaces the typical bioprocessing steps of crop growth, milling, and fermentation, with a one-step photosynthetic process. However, low yields and slow growth rates limit the economic potential of such endeavors. Rational metabolic engineering methods are hindered by limited cellular knowledge and inadequate models of Synechocystis. Instead, inverse metabolic engineering, a scheme based on combinatorial gene searches which does not require detailed cellular models, but can exploit sequence data and existing molecular biological techniques, was used to find genes that (1) improve the production of the biopolymer poly-3-hydroxybutyrate (PHB) and (2) increase the growth rate. A fluorescence activated cell sorting assay was developed to screen for high PHB producing clones. Separately, serial sub-culturing was used to select clones that improve growth rate. Novel gene knock-outs were identified that increase PHB production and others that increase the specific growth rate. These improvements make this system more attractive for industrial use and demonstrate the power of inverse metabolic engineering to identify novel phenotype-associated genes in poorly understood systems.
Resumo:
Fueled by ever-growing genomic information and rapid developments of proteomics–the large scale analysis of proteins and mapping its functional role has become one of the most important disciplines for characterizing complex cell function. For building functional linkages between the biomolecules, and for providing insight into the mechanisms of biological processes, last decade witnessed the exploration of combinatorial and chip technology for the detection of bimolecules in a high throughput and spatially addressable fashion. Among the various techniques developed, the protein chip technology has been rapid. Recently we demonstrated a new platform called “Spacially addressable protein array” (SAPA) to profile the ligand receptor interactions. To optimize the platform, the present study investigated various parameters such as the surface chemistry and role of additives for achieving high density and high-throughput detection with minimal nonspecific protein adsorption. In summary the present poster will address some of the critical challenges in protein micro array technology and the process of fine tuning to achieve the optimum system for solving real biological problems.