2 resultados para Collaboration Spaces
em Massachusetts Institute of Technology
Resumo:
This paper presents a computation of the $V_gamma$ dimension for regression in bounded subspaces of Reproducing Kernel Hilbert Spaces (RKHS) for the Support Vector Machine (SVM) regression $epsilon$-insensitive loss function, and general $L_p$ loss functions. Finiteness of the RV_gamma$ dimension is shown, which also proves uniform convergence in probability for regression machines in RKHS subspaces that use the $L_epsilon$ or general $L_p$ loss functions. This paper presenta a novel proof of this result also for the case that a bias is added to the functions in the RKHS.
Resumo:
This paper was prepared for delivery at the annual meeting of the Association of Asian Studies, Boston, April 11, 1987. A preliminary version was delivered to the annual meeting of the American Association for the Advancement of Science, Chicago, February 16, 1987.