1 resultado para Co-occurrence Relation
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (17)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (20)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- Bioline International (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (21)
- Boston University Digital Common (1)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (21)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- Cochin University of Science & Technology (CUSAT), India (8)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (7)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (8)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (10)
- Indian Institute of Science - Bangalore - Índia (18)
- Instituto Nacional de Saúde de Portugal (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (31)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (36)
- Queensland University of Technology - ePrints Archive (317)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (82)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (22)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (4)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (30)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (39)
- University of Queensland eSpace - Australia (11)
- University of Washington (2)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms.