2 resultados para Clutter

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object recognition is complicated by clutter, occlusion, and sensor error. Since pose hypotheses are based on image feature locations, these effects can lead to false negatives and positives. In a typical recognition algorithm, pose hypotheses are tested against the image, and a score is assigned to each hypothesis. We use a statistical model to determine the score distribution associated with correct and incorrect pose hypotheses, and use binary hypothesis testing techniques to distinguish between them. Using this approach we can compare algorithms and noise models, and automatically choose values for internal system thresholds to minimize the probability of making a mistake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new information-theoretic approach is presented for finding the pose of an object in an image. The technique does not require information about the surface properties of the object, besides its shape, and is robust with respect to variations of illumination. In our derivation, few assumptions are made about the nature of the imaging process. As a result the algorithms are quite general and can foreseeably be used in a wide variety of imaging situations. Experiments are presented that demonstrate the approach registering magnetic resonance (MR) images with computed tomography (CT) images, aligning a complex 3D object model to real scenes including clutter and occlusion, tracking a human head in a video sequence and aligning a view-based 2D object model to real images. The method is based on a formulation of the mutual information between the model and the image called EMMA. As applied here the technique is intensity-based, rather than feature-based. It works well in domains where edge or gradient-magnitude based methods have difficulty, yet it is more robust than traditional correlation. Additionally, it has an efficient implementation that is based on stochastic approximation. Finally, we will describe a number of additional real-world applications that can be solved efficiently and reliably using EMMA. EMMA can be used in machine learning to find maximally informative projections of high-dimensional data. EMMA can also be used to detect and correct corruption in magnetic resonance images (MRI).