4 resultados para Clinical reasoning process
em Massachusetts Institute of Technology
Resumo:
There has been much interest in the area of model-based reasoning within the Artificial Intelligence community, particularly in its application to diagnosis and troubleshooting. The core issue in this thesis, simply put, is, model-based reasoning is fine, but whence the model? Where do the models come from? How do we know we have the right models? What does the right model mean anyway? Our work has three major components. The first component deals with how we determine whether a piece of information is relevant to solving a problem. We have three ways of determining relevance: derivational, situational and an order-of-magnitude reasoning process. The second component deals with the defining and building of models for solving problems. We identify these models, determine what we need to know about them, and importantly, determine when they are appropriate. Currently, the system has a collection of four basic models and two hybrid models. This collection of models has been successfully tested on a set of fifteen simple kinematics problems. The third major component of our work deals with how the models are selected.
Resumo:
Reasoning about motion is an important part of our commonsense knowledge, involving fluent spatial reasoning. This work studies the qualitative and geometric knowledge required to reason in a world that consists of balls moving through space constrained by collisions with surfaces, including dissipative forces and multiple moving objects. An analog geometry representation serves the program as a diagram, allowing many spatial questions to be answered by numeric calculation. It also provides the foundation for the construction and use of place vocabulary, the symbolic descriptions of space required to do qualitative reasoning about motion in the domain. The actual motion of a ball is described as a network consisting of descriptions of qualitatively distinct types of motion. Implementing the elements of these networks in a constraint language allows the same elements to be used for both analysis and simulation of motion. A qualitative description of the actual motion is also used to check the consistency of assumptions about motion. A process of qualitative simulation is used to describe the kinds of motion possible from some state. The ambiguity inherent in such a description can be reduced by assumptions about physical properties of the ball or assumptions about its motion. Each assumption directly rules out some kinds of motion, but other knowledge is required to determine the indirect consequences of making these assumptions. Some of this knowledge is domain dependent and relies heavily on spatial descriptions.
Resumo:
Objects move, collide, flow, bend, heat up, cool down, stretch, compress and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand common sense physical reasoning and make programs that interact with the physical world as well as people do we must understand qualitative reasoning about processes, when they will occur, their effects, and when they will stop. Qualitative Process theory defines a simple notion of physical process that appears useful as a language in which to write dynamical theories. Reasoning about processes also motivates a new qualitative representation for quantity in terms of inequalities, called quantity space. This report describes the basic concepts of Qualitative Process theory, several different kinds of reasoning that can be performed with them, and discusses its impact on other issues in common sense reasoning about the physical world, such as causal reasoning and measurement interpretation. Several extended examples illustrate the utility of the theory, including figuring out that a boiler can blow up, that an oscillator with friction will eventually stop, and how to say that you can pull with a string but not push with it. This report also describes GIZMO, an implemented computer program which uses Qualitative Process theory to make predictions and interpret simple measurements. The represnetations and algorithms used in GIZMO are described in detail, and illustrated using several examples.
Resumo:
Artificial Intelligence research involves the creation of extremely complex programs which must possess the capability to introspect, learn, and improve their expertise. Any truly intelligent program must be able to create procedures and to modify them as it gathers information from its experience. [Sussman, 1975] produced such a system for a 'mini-world'; but truly intelligent programs must be considerably more complex. A crucial stepping stone in AI research is the development of a system which can understand complex programs well enough to modify them. There is also a complexity barrier in the world of commercial software which is making the cost of software production and maintenance prohibitive. Here too a system which is capable of understanding complex programs is a necessary step. The Programmer's Apprentice Project [Rich and Shrobe, 76] is attempting to develop an interactive programming tool which will help expert programmers deal with the complexity involved in engineering a large software system. This report describes REASON, the deductive component of the programmer's apprentice. REASON is intended to help expert programmers in the process of evolutionary program design. REASON utilizes the engineering techniques of modelling, decomposition, and analysis by inspection to determine how modules interact to achieve the desired overall behavior of a program. REASON coordinates its various sources of knowledge by using a dependency-directed structure which records the justification for each deduction it makes. Once a program has been analyzed these justifications can be summarized into a teleological structure called a plan which helps the system understand the impact of a proposed program modification.