4 resultados para Choruses, Secular (Mixed voices, 8 parts) with piano.

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of a model-based vision system that exploits hierarchies of both object structure and object scale. The focus of the research is to use these hierarchies to achieve robust recognition based on effective organization and indexing schemes for model libraries. The goal of the system is to recognize parameterized instances of non-rigid model objects contained in a large knowledge base despite the presence of noise and occlusion. Robustness is achieved by developing a system that can recognize viewed objects that are scaled or mirror-image instances of the known models or that contain components sub-parts with different relative scaling, rotation, or translation than in models. The approach taken in this thesis is to develop an object shape representation that incorporates a component sub-part hierarchy- to allow for efficient and correct indexing into an automatically generated model library as well as for relative parameterization among sub-parts, and a scale hierarchy- to allow for a general to specific recognition procedure. After analysis of the issues and inherent tradeoffs in the recognition process, a system is implemented using a representation based on significant contour curvature changes and a recognition engine based on geometric constraints of feature properties. Examples of the system's performance are given, followed by an analysis of the results. In conclusion, the system's benefits and limitations are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The next generations of both biological engineering and computer engineering demand that control be exerted at the molecular level. Creating, characterizing and controlling synthetic biological systems may provide us with the ability to build cells that are capable of a plethora of activities, from computation to synthesizing nanostructures. To develop these systems, we must have a set of tools not only for synthesizing systems, but also designing and simulating them. The BioJADE project provides a comprehensive, extensible design and simulation platform for synthetic biology. BioJADE is a graphical design tool built in Java, utilizing a database back end, and supports a range of simulations using an XML communication protocol. BioJADE currently supports a library of over 100 parts with which it can compile designs into actual DNA, and then generate synthesis instructions to build the physical parts. The BioJADE project contributes several tools to Synthetic Biology. BioJADE in itself is a powerful tool for synthetic biology designers. Additionally, we developed and now make use of a centralized BioBricks repository, which enables the sharing of BioBrick components between researchers, and vastly reduces the barriers to entry for aspiring Synthetic Biologists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holes with different sizes from microscale to nanoscale were directly fabricated by focused ion beam (FIB) milling in this paper. Maximum aspect ratio of the fabricated holes can be 5:1 for the hole with large size with pure FIB milling, 10:1 for gas assistant etching, and 1:1 for the hole with size below 100 nm. A phenomenon of volume swell at the boundary of the hole was observed. The reason maybe due to the dose dependence of the effective sputter yield in low intensity Gaussian beam tail regions and redeposition. Different materials were used to investigate variation of the aspect ratio. The results show that for some special material, such as Ni-Be, the corresponding aspect ratio can reach 13.8:1 with Cl₂ assistant etching, but only 0.09:1 for Si(100) with single scan of the FIB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A promising technique for the large-scale manufacture of micro-fluidic devices and photonic devices is hot embossing of polymers such as PMMA. Micro-embossing is a deformation process where the workpiece material is heated to permit easier material flow and then forced over a planar patterned tool. While there has been considerable, attention paid to process feasibility very little effort has been put into production issues such as process capability and eventual process control. In this paper, we present initial studies aimed at identifying the origins and magnitude of variability for embossing features at the micron scale in PMMA. Test parts with features ranging from 3.5- 630 µm wide and 0.9 µm deep were formed. Measurements at this scale proved very difficult, and only atomic force microscopy was able to provide resolution sufficient to identify process variations. It was found that standard deviations of widths at the 3-4 µm scale were on the order of 0.5 µm leading to a coefficient of variation as high as 13%. Clearly, the transition from test to manufacturing for this process will require understanding the causes of this variation and devising control methods to minimize its magnitude over all types of parts.