5 resultados para Chapman, Donald

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a simple, sound, complete, and systematic algorithm for domain independent STRIPS planning. Simplicity is achieved by starting with a ground procedure and then applying a general and independently verifiable, lifting transformation. Previous planners have been designed directly as lifted procedures. Our ground procedure is a ground version of Tate's NONLIN procedure. In Tate's procedure one is not required to determine whether a prerequisite of a step in an unfinished plan is guarnateed to hold in all linearizations. This allows Tate"s procedure to avoid the use of Chapman"s modal truth criterion. Systematicity is the property that the same plan, or partial plan, is never examined more than once. Systematicity is achieved through a simple modification of Tate's procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes Sonja, a system which uses instructions in the course of visually-guided activity. The thesis explores an integration of research in vision, activity, and natural language pragmatics. Sonja's visual system demonstrates the use of several intermediate visual processes, particularly visual search and routines, previously proposed on psychophysical grounds. The computations Sonja performs are compatible with the constraints imposed by neuroscientifically plausible hardware. Although Sonja can operate autonomously, it can also make flexible use of instructions provided by a human advisor. The system grounds its understanding of these instructions in perception and action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robots must plan and execute tasks in the presence of uncertainty. Uncertainty arises from sensing errors, control errors, and uncertainty in the geometry of the environment. The last, which is called model error, has received little previous attention. We present a framework for computing motion strategies that are guaranteed to succeed in the presence of all three kinds of uncertainty. The motion strategies comprise sensor-based gross motions, compliant motions, and simple pushing motions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motion planning problem is of central importance to the fields of robotics, spatial planning, and automated design. In robotics we are interested in the automatic synthesis of robot motions, given high-level specifications of tasks and geometric models of the robot and obstacles. The Mover's problem is to find a continuous, collision-free path for a moving object through an environment containing obstacles. We present an implemented algorithm for the classical formulation of the three-dimensional Mover's problem: given an arbitrary rigid polyhedral moving object P with three translational and three rotational degrees of freedom, find a continuous, collision-free path taking P from some initial configuration to a desired goal configuration. This thesis describes the first known implementation of a complete algorithm (at a given resolution) for the full six degree of freedom Movers' problem. The algorithm transforms the six degree of freedom planning problem into a point navigation problem in a six-dimensional configuration space (called C-Space). The C-Space obstacles, which characterize the physically unachievable configurations, are directly represented by six-dimensional manifolds whose boundaries are five dimensional C-surfaces. By characterizing these surfaces and their intersections, collision-free paths may be found by the closure of three operators which (i) slide along 5-dimensional intersections of level C-Space obstacles; (ii) slide along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jump between 6 dimensional obstacles. Implementing the point navigation operators requires solving fundamental representational and algorithmic questions: we will derive new structural properties of the C-Space constraints and shoe how to construct and represent C-Surfaces and their intersection manifolds. A definition and new theoretical results are presented for a six-dimensional C-Space extension of the generalized Voronoi diagram, called the C-Voronoi diagram, whose structure we relate to the C-surface intersection manifolds. The representations and algorithms we develop impact many geometric planning problems, and extend to Cartesian manipulators with six degrees of freedom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of achieving conjunctive goals has been central to domain independent planning research; the nonlinear constraint-posting approach has been most successful. Previous planners of this type have been comlicated, heuristic, and ill-defined. I have combined and distilled the state of the art into a simple, precise, implemented algorithm (TWEAK) which I have proved correct and complete. I analyze previous work on domain-independent conjunctive planning; in retrospect it becomes clear that all conjunctive planners, linear and nonlinear, work the same way. The efficiency of these planners depends on the traditional add/delete-list representation for actions, which drastically limits their usefulness. I present theorems that suggest that efficient general purpose planning with more expressive action representations is impossible, and suggest ways to avoid this problem.