4 resultados para Chaotic attractors

em Massachusetts Institute of Technology


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Control algorithms that exploit chaotic behavior can vastly improve the performance of many practical and useful systems. The program Perfect Moment is built around a collection of such techniques. It autonomously explores a dynamical system's behavior, using rules embodying theorems and definitions from nonlinear dynamics to zero in on interesting and useful parameter ranges and state-space regions. It then constructs a reference trajectory based on that information and causes the system to follow it. This program and its results are illustrated with several examples, among them the phase-locked loop, where sections of chaotic attractors are used to increase the capture range of the circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying chaotic behavior in nonlinear systems requires numerous computations in order to simulate the behavior of such systems. The Standard Map Machine was designed and implemented as a special computer for performing these intensive computations with high-speed and high-precision. Its impressive performance is due to its simple architecture specialized to the numerical computations required of nonlinear systems. This report discusses the design and implementation of the Standard Map Machine and its use in the study of nonlinear mappings; in particular, the study of the standard map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report examines how to estimate the parameters of a chaotic system given noisy observations of the state behavior of the system. Investigating parameter estimation for chaotic systems is interesting because of possible applications for high-precision measurement and for use in other signal processing, communication, and control applications involving chaotic systems. In this report, we examine theoretical issues regarding parameter estimation in chaotic systems and develop an efficient algorithm to perform parameter estimation. We discover two properties that are helpful for performing parameter estimation on non-structurally stable systems. First, it turns out that most data in a time series of state observations contribute very little information about the underlying parameters of a system, while a few sections of data may be extraordinarily sensitive to parameter changes. Second, for one-parameter families of systems, we demonstrate that there is often a preferred direction in parameter space governing how easily trajectories of one system can "shadow'" trajectories of nearby systems. This asymmetry of shadowing behavior in parameter space is proved for certain families of maps of the interval. Numerical evidence indicates that similar results may be true for a wide variety of other systems. Using the two properties cited above, we devise an algorithm for performing parameter estimation. Standard parameter estimation techniques such as the extended Kalman filter perform poorly on chaotic systems because of divergence problems. The proposed algorithm achieves accuracies several orders of magnitude better than the Kalman filter and has good convergence properties for large data sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global temperature variations between 1861 and 1984 are forecast usingsregularization networks, multilayer perceptrons and linearsautoregression. The regularization network, optimized by stochasticsgradient descent associated with colored noise, gives the bestsforecasts. For all the models, prediction errors noticeably increasesafter 1965. These results are consistent with the hypothesis that thesclimate dynamics is characterized by low-dimensional chaos and thatsthe it may have changed at some point after 1965, which is alsosconsistent with the recent idea of climate change.s