5 resultados para Chan
em Massachusetts Institute of Technology
Resumo:
Various studies of asset markets have shown that traders are capable of learning and transmitting information through prices in many situations. In this paper we replace human traders with intelligent software agents in a series of simulated markets. Using these simple learning agents, we are able to replicate several features of the experiments with human subjects, regarding (1) dissemination of information from informed to uninformed traders, and (2) aggregation of information spread over different traders.
Resumo:
This paper presents an adaptive learning model for market-making under the reinforcement learning framework. Reinforcement learning is a learning technique in which agents aim to maximize the long-term accumulated rewards. No knowledge of the market environment, such as the order arrival or price process, is assumed. Instead, the agent learns from real-time market experience and develops explicit market-making strategies, achieving multiple objectives including the maximizing of profits and minimization of the bid-ask spread. The simulation results show initial success in bringing learning techniques to building market-making algorithms.
Resumo:
Market prices are well known to efficiently collect and aggregate diverse information regarding the value of commodities and assets. The role of markets has been particularly suitable to pricing financial securities. This article provides an alternative application of the pricing mechanism to marketing research - using pseudo-securities markets to measure preferences over new product concepts. Surveys, focus groups, concept tests and conjoint studies are methods traditionally used to measure individual and aggregate preferences. Unfortunately, these methods can be biased, costly and time-consuming to conduct. The present research is motivated by the desire to efficiently measure preferences and more accurately predict new product success, based on the efficiency and incentive-compatibility of security trading markets. The article describes a novel market research method, pro-vides insight into why the method should work, and compares the results of several trading experiments against other methodologies such as concept testing and conjoint analysis.
Resumo:
High aspect ratio polymeric micro-patterns are ubiquitous in many fields ranging from sensors, actuators, optics, fluidics and medical. Second generation PDMS molds are replicated against first generation silicon molds created by deep reactive ion etching. In order to ensure successful demolding, the silicon molds are coated with a thin layer of C[subscript 4]F[subscript 8] plasma polymer to reduce the adhesion force. Peel force and demolding status are used to determine if delamination is successful. Response surface method is employed to provide insights on how changes in coil power, passivating time and gas flow conditions affect plasma polymerization of C[subscript 4]F[subscript 8].
Resumo:
This report demonstrates a UV-embossed polymeric chip for protein separation and identification by Capillary Isoelectric Focusing (CIEF) and Matrix Assisted Laser Desportion/Ionization Mass Spectrometry (MALDI-MS). The polymeric chip has been fabricated by UV-embossing technique with high throughput; the issues in the fabrication have been addressed. In order to achieve high sensitivity of mass detection, five different types of UV curable polymer have been used as sample support to perform protein ionization in Mass Spectrometry (MS); the best results is compared to PMMA, which was the commonly used plastic chip for biomolecular separation. Experimental results show that signal from polyester is 12 times better than that of PMMA in terms of detection sensitivity. Finally, polyester chip is utilized to carry out CIEF to separate proteins, followed by MS identification.