2 resultados para Cellular automata models
em Massachusetts Institute of Technology
Resumo:
A cellular automaton is an iterative array of very simple identical information processing machines called cells. Each cell can communicate with neighboring cells. At discrete moments of time the cells can change from one state to another as a function of the states of the cell and its neighbors. Thus on a global basis, the collection of cells is characterized by some type of behavior. The goal of this investigation was to determine just how simple the individual cells could be while the global behavior achieved some specified criterion of complexity ??ually the ability to perform a computation or to reproduce some pattern. The chief result described in this thesis is that an array of identical square cells (in two dimensions), each cell of which communicates directly with only its four nearest edge neighbors and each of which can exist in only two states, can perform any computation. This computation proceeds in a straight forward way. A configuration is a specification of the states of all the cells in some area of the iterative array. Another result described in this thesis is the existence of a self-reproducing configuration in an array of four-state cells, a reduction of four states from the previously known eight-state case. The technique of information processing in cellular arrays involves the synthesis of some basic components. Then the desired behaviors are obtained by the interconnection of these components. A chapter on components describes some sets of basic components. Possible applications of the results of this investigation, descriptions of some interesting phenomena (for vanishingly small cells), and suggestions for further study are given later.
Resumo:
In this thesis I present a language for instructing a sheet of identically-programmed, flexible, autonomous agents (``cells'') to assemble themselves into a predetermined global shape, using local interactions. The global shape is described as a folding construction on a continuous sheet, using a set of axioms from paper-folding (origami). I provide a means of automatically deriving the cell program, executed by all cells, from the global shape description. With this language, a wide variety of global shapes and patterns can be synthesized, using only local interactions between identically-programmed cells. Examples include flat layered shapes, all plane Euclidean constructions, and a variety of tessellation patterns. In contrast to approaches based on cellular automata or evolution, the cell program is directly derived from the global shape description and is composed from a small number of biologically-inspired primitives: gradients, neighborhood query, polarity inversion, cell-to-cell contact and flexible folding. The cell programs are robust, without relying on regular cell placement, global coordinates, or synchronous operation and can tolerate a small amount of random cell death. I show that an average cell neighborhood of 15 is sufficient to reliably self-assemble complex shapes and geometric patterns on randomly distributed cells. The language provides many insights into the relationship between local and global descriptions of behavior, such as the advantage of constructive languages, mechanisms for achieving global robustness, and mechanisms for achieving scale-independent shapes from a single cell program. The language suggests a mechanism by which many related shapes can be created by the same cell program, in the manner of D'Arcy Thompson's famous coordinate transformations. The thesis illuminates how complex morphology and pattern can emerge from local interactions, and how one can engineer robust self-assembly.