9 resultados para Causal violación

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When we reason about change over time, causation provides an implicit preference: we prefer sequences of situations in which one situation leads causally to the next, rather than sequences in which one situation follows another at random and without causal connections. In this paper, we explore the problem of temporal reasoning --- reasoning about change over time --- and the crucial role that causation plays in our intuitions. We examine previous approaches to temporal reasoning, and their shortcomings, in light of this analysis. We propose a new system for causal reasoning, motivated action theory, which builds upon causation as a crucial preference creterion. Motivated action theory solves the traditional problems of both forward and backward reasoning, and additionally provides a basis for a new theory of explanation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the problem of an autonomous agent learning a causal world model of its environment. Previous approaches to learning causal world models have concentrated on environments that are too "easy" (deterministic finite state machines) or too "hard" (containing much hidden state). We describe a new domain --- environments with manifest causal structure --- for learning. In such environments the agent has an abundance of perceptions of its environment. Specifically, it perceives almost all the relevant information it needs to understand the environment. Many environments of interest have manifest causal structure and we show that an agent can learn the manifest aspects of these environments quickly using straightforward learning techniques. We present a new algorithm to learn a rule-based causal world model from observations in the environment. The learning algorithm includes (1) a low level rule-learning algorithm that converges on a good set of specific rules, (2) a concept learning algorithm that learns concepts by finding completely correlated perceptions, and (3) an algorithm that learns general rules. In addition this thesis examines the problem of finding a good expert from a sequence of experts. Each expert has an "error rate"; we wish to find an expert with a low error rate. However, each expert's error rate and the distribution of error rates are unknown. A new expert-finding algorithm is presented and an upper bound on the expected error rate of the expert is derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a paradigm for combining associational and causal reasoning to achieve efficient and robust problem-solving behavior. The Generate, Test and Debug (GTD) paradigm generates initial hypotheses using associational (heuristic) rules. The tester verifies hypotheses, supplying the debugger with causal explanations for bugs found if the test fails. The debugger uses domain-independent causal reasoning techniques to repair hypotheses, analyzing domain models and the causal explanations produced by the tester to determine how to replace faulty assumptions made by the generator. We analyze the strengths and weaknesses of associational and causal reasoning techniques, and present a theory of debugging plans and interpretations. The GTD paradigm has been implemented and tested in the domains of geologic interpretation, the blocks world, and Tower of Hanoi problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a theory of human-like reasoning in the general domain of designed physical systems, and in particular, electronic circuits. One aspect of the theory, causal analysis, describes how the behavior of individual components can be combined to explain the behavior of composite systems. Another aspect of the theory, teleological analysis, describes how the notion that the system has a purpose can be used to aid this causal analysis. The theory is implemented as a computer program, which, given a circuit topology, can construct by qualitative causal analysis a mechanism graph describing the functional topology of the system. This functional topology is then parsed by a grammar for common circuit functions. Ambiguities are introduced into the analysis by the approximate qualitative nature of the analysis. For example, there are often several possible mechanisms which might describe the circuit's function. These are disambiguated by teleological analysis. The requirement that each component be assigned an appropriate purpose in the functional topology imposes a severe constraint which eliminates all the ambiguities. Since both analyses are based on heuristics, the chosen mechanism is a rationalization of how the circuit functions, and does not guarantee that the circuit actually does function. This type of coarse understanding of circuits is useful for analysis, design and troubleshooting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Informal causal descriptions of physical systems abound in sources such as encyclopedias, reports and user's manuals. Yet these descriptions remain largely opaque to computer processing. This paper proposes a representational framework in which such descriptions are viewed as providing partial specifications of paths in a space of possible transitions, or transition space. In this framework, the task of comprehending informal causal descriptions emerges as one of completing the specifications of paths in transition space---filling causal gaps and relating accounts of activity varied by analogy and abstraction. The use of the representation and its operations is illustrated in the context of a simple description concerning rocket propulsion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a Communication Bootstrapping system, peer components with different perceptual worlds invent symbols and syntax based on correlations between their percepts. I propose that Communication Bootstrapping can also be used to acquire functional definitions of words and causal reasoning knowledge. I illustrate this point with several examples, then sketch the architecture of a system in progress which attempts to execute this task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I describe an approach to forming hypotheses about hidden mechanism configurations within devices given external observations and a vocabulary of primitive mechanisms. An implemented causal modelling system called JACK constructs explanations for why a second piece of toast comes out lighter, why the slide in a tire gauge does not slip back inside when the gauge is removed from the tire, and how in a refrigerator a single substance can serve as a heat sink for the interior and a heat source for the exterior. I report the number of hypotheses admitted for each device example, and provide empirical results which isolate the pruning power due to different constraint sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparative analysis is the problem of predicting how a system will react to perturbations in its parameters, and why. For example, comparative analysis could be asked to explain why the period of an oscillating spring/block system would increase if the mass of the block were larger. This thesis formalizes the task of comparative analysis and presents two solution techniques: differential qualitative (DQ) analysis and exaggeration. Both techniques solve many comparative analysis problems, providing explanations suitable for use by design systems, automated diagnosis, intelligent tutoring systems, and explanation based generalization. This thesis explains the theoretical basis for each technique, describes how they are implemented, and discusses the difference between the two. DQ analysis is sound; it never generates an incorrect answer to a comparative analysis question. Although exaggeration does occasionally produce misleading answers, it solves a larger class of problems than DQ analysis and frequently results in simpler explanations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objects move, collide, flow, bend, heat up, cool down, stretch, compress and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand common sense physical reasoning and make programs that interact with the physical world as well as people do we must understand qualitative reasoning about processes, when they will occur, their effects, and when they will stop. Qualitative Process theory defines a simple notion of physical process that appears useful as a language in which to write dynamical theories. Reasoning about processes also motivates a new qualitative representation for quantity in terms of inequalities, called quantity space. This report describes the basic concepts of Qualitative Process theory, several different kinds of reasoning that can be performed with them, and discusses its impact on other issues in common sense reasoning about the physical world, such as causal reasoning and measurement interpretation. Several extended examples illustrate the utility of the theory, including figuring out that a boiler can blow up, that an oscillator with friction will eventually stop, and how to say that you can pull with a string but not push with it. This report also describes GIZMO, an implemented computer program which uses Qualitative Process theory to make predictions and interpret simple measurements. The represnetations and algorithms used in GIZMO are described in detail, and illustrated using several examples.