5 resultados para Carpenter, Jack
em Massachusetts Institute of Technology
Resumo:
Combining numerical techniques with ideas from symbolic computation and with methods incorporating knowledge of science and mathematics leads to a new category of intelligent computational tools for scientists and engineers. These tools autonomously prepare simulation experiments from high-level specifications of physical models. For computationally intensive experiments, they automatically design special-purpose numerical engines optimized to perform the necessary computations. They actively monitor numerical and physical experiments. They interpret experimental data and formulate numerical results in qualitative terms. They enable their human users to control computational experiments in terms of high-level behavioral descriptions.
Resumo:
Cyclic changes in the shape of a quasi-rigid body on a curved manifold can lead to net translation and/or rotation of the body in the manifold. Presuming space-time is a curved manifold as portrayed by general relativity, translation in space can be accomplished simply by cyclic changes in the shape of a body, without any thrust or external forces.
Resumo:
Classical mechanics is deceptively simple. It is surprisingly easy to get the right answer with fallacious reasoning or without real understanding. To address this problem we use computational techniques to communicate a deeper understanding of Classical Mechanics. Computational algorithms are used to express the methods used in the analysis of dynamical phenomena. Expressing the methods in a computer language forces them to be unambiguous and computationally effective. The task of formulating a method as a computer-executable program and debugging that program is a powerful exercise in the learning process. Also, once formalized procedurally, a mathematical idea becomes a tool that can be used directly to compute results.
Resumo:
I describe an approach to forming hypotheses about hidden mechanism configurations within devices given external observations and a vocabulary of primitive mechanisms. An implemented causal modelling system called JACK constructs explanations for why a second piece of toast comes out lighter, why the slide in a tire gauge does not slip back inside when the gauge is removed from the tire, and how in a refrigerator a single substance can serve as a heat sink for the interior and a heat source for the exterior. I report the number of hypotheses admitted for each device example, and provide empirical results which isolate the pruning power due to different constraint sources.
Resumo:
How does a person answer questions about children's stories? For example, consider 'Janet wanted Jack's paints. She looked at the picture he was painting and said 'Those paints make your picture look funny.' The question to ask is 'Why did Janet say that?'. We propose a model which answers such questions by relating the story to background real world knowledge. The model tries to generate and answer important questions about the story as it goes along. Within this model we examine two questions about the story as it goes along. Within this model we examine two problems, how to organize this real world knowledge, and how it enters into more traditional linguistic questions such as deciding noun phrase reference.