5 resultados para Canham, Donald

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robots must plan and execute tasks in the presence of uncertainty. Uncertainty arises from sensing errors, control errors, and uncertainty in the geometry of the environment. The last, which is called model error, has received little previous attention. We present a framework for computing motion strategies that are guaranteed to succeed in the presence of all three kinds of uncertainty. The motion strategies comprise sensor-based gross motions, compliant motions, and simple pushing motions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motion planning problem is of central importance to the fields of robotics, spatial planning, and automated design. In robotics we are interested in the automatic synthesis of robot motions, given high-level specifications of tasks and geometric models of the robot and obstacles. The Mover's problem is to find a continuous, collision-free path for a moving object through an environment containing obstacles. We present an implemented algorithm for the classical formulation of the three-dimensional Mover's problem: given an arbitrary rigid polyhedral moving object P with three translational and three rotational degrees of freedom, find a continuous, collision-free path taking P from some initial configuration to a desired goal configuration. This thesis describes the first known implementation of a complete algorithm (at a given resolution) for the full six degree of freedom Movers' problem. The algorithm transforms the six degree of freedom planning problem into a point navigation problem in a six-dimensional configuration space (called C-Space). The C-Space obstacles, which characterize the physically unachievable configurations, are directly represented by six-dimensional manifolds whose boundaries are five dimensional C-surfaces. By characterizing these surfaces and their intersections, collision-free paths may be found by the closure of three operators which (i) slide along 5-dimensional intersections of level C-Space obstacles; (ii) slide along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jump between 6 dimensional obstacles. Implementing the point navigation operators requires solving fundamental representational and algorithmic questions: we will derive new structural properties of the C-Space constraints and shoe how to construct and represent C-Surfaces and their intersection manifolds. A definition and new theoretical results are presented for a six-dimensional C-Space extension of the generalized Voronoi diagram, called the C-Voronoi diagram, whose structure we relate to the C-surface intersection manifolds. The representations and algorithms we develop impact many geometric planning problems, and extend to Cartesian manipulators with six degrees of freedom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis defines Pi, a parallel architecture interface that separates model and machine issues, allowing them to be addressed independently. This provides greater flexibility for both the model and machine builder. Pi addresses a set of common parallel model requirements including low latency communication, fast task switching, low cost synchronization, efficient storage management, the ability to exploit locality, and efficient support for sequential code. Since Pi provides generic parallel operations, it can efficiently support many parallel programming models including hybrids of existing models. Pi also forms a basis of comparison for architectural components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A program that simulates a Digital Equipment Corporation PDP-11 computer and many of its peripherals on the AI Laboratory Time Sharing System (ITS) is described from a user's reference point of view. This simulator has a built in DDT-like command level which provides the user with the normal range of DDT facilities but also with several special debugging features built into the simulator. The DDT command language was implemented by Richard M. Stallman while the simulator was written by the author of this memo.