1 resultado para Call Graph
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (18)
- Aston University Research Archive (52)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (74)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Bibloteca do Senado Federal do Brasil (9)
- Bioline International (1)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (80)
- Brock University, Canada (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (24)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (12)
- Cochin University of Science & Technology (CUSAT), India (13)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (19)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (9)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (12)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- DRUM (Digital Repository at the University of Maryland) (6)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (4)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (17)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (18)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (8)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (5)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (26)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (17)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (7)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- Repositorio Institucional UNISALLE - Colombia (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (14)
- Scielo Uruguai (1)
- South Carolina State Documents Depository (10)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (16)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (20)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (25)
- Université de Montréal (1)
- Université de Montréal, Canada (7)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (82)
- University of Queensland eSpace - Australia (113)
- University of Southampton, United Kingdom (4)
- University of Washington (4)
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.