6 resultados para CREATION OF JOBS

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes a computer system that creates simple computer animation in response to high-level, vague, and incomplete descriptions of films. It makes its films by collecting and evaluating suggestions from several different bodies of knowledge. The order in which it makes its choices is influenced by the focus of the film. Difficult choices are postponed to be resumed when more of the film has been determined. The system was implemented in an object-oriented language based upon computational entities called "actors". The goal behind the construction of the system is that, whenever faced with a choice, it should sensibly choose between alternatives based upon the description of the film and as much general knowledge as possible. The system is presented as a computational model of creativity and aesthetics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A foundational model of concurrency is developed in this thesis. We examine issues in the design of parallel systems and show why the actor model is suitable for exploiting large-scale parallelism. Concurrency in actors is constrained only by the availability of hardware resources and by the logical dependence inherent in the computation. Unlike dataflow and functional programming, however, actors are dynamically reconfigurable and can model shared resources with changing local state. Concurrency is spawned in actors using asynchronous message-passing, pipelining, and the dynamic creation of actors. This thesis deals with some central issues in distributed computing. Specifically, problems of divergence and deadlock are addressed. For example, actors permit dynamic deadlock detection and removal. The problem of divergence is contained because independent transactions can execute concurrently and potentially infinite processes are nevertheless available for interaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We develop efficient techniques for the non-rigid registration of medical images by using representations that adapt to the anatomy found in such images. Images of anatomical structures typically have uniform intensity interiors and smooth boundaries. We create methods to represent such regions compactly using tetrahedra. Unlike voxel-based representations, tetrahedra can accurately describe the expected smooth surfaces of medical objects. Furthermore, the interior of such objects can be represented using a small number of tetrahedra. Rather than describing a medical object using tens of thousands of voxels, our representations generally contain only a few thousand elements. Tetrahedra facilitate the creation of efficient non-rigid registration algorithms based on finite element methods (FEM). We create a fast, FEM-based method to non-rigidly register segmented anatomical structures from two subjects. Using our compact tetrahedral representations, this method generally requires less than one minute of processing time on a desktop PC. We also create a novel method for the non-rigid registration of gray scale images. To facilitate a fast method, we create a tetrahedral representation of a displacement field that automatically adapts to both the anatomy in an image and to the displacement field. The resulting algorithm has a computational cost that is dominated by the number of nodes in the mesh (about 10,000), rather than the number of voxels in an image (nearly 10,000,000). For many non-rigid registration problems, we can find a transformation from one image to another in five minutes. This speed is important as it allows use of the algorithm during surgery. We apply our algorithms to find correlations between the shape of anatomical structures and the presence of schizophrenia. We show that a study based on our representations outperforms studies based on other representations. We also use the results of our non-rigid registration algorithm as the basis of a segmentation algorithm. That algorithm also outperforms other methods in our tests, producing smoother segmentations and more accurately reproducing manual segmentations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Massachusetts Institute of Technology (MIT) submits this proposal for the Enterprise Value Phase of the Lean Aerospace Initiative (LAI) in response to the October 9, 2002 Request for Proposal (RFP) F33615-02-2-5501 from the Air Force Research Laboratory (AFRL/MLKT), Wright-Patterson Air Force Base, Ohio. This proposal addresses the conduct of the LAI as set forth in the Enterprise Value Phase Concept of Operations (final draft dated 5 June 2002. The creation of this Enterprise Value Phase Concept of Operations (ConOps) was the result of extensive interaction among all stakeholders in the LAI consortium. The proposed products and research topics have been developed by the MIT LAI team based on this extended interaction with the Lean Aerospace Initiative consortium members during the concept of operations development. This proposal is in consonance with the Enterprise Value Phase vision, and mission as set forth in the concept of operations so as to meet stakeholder needs to achieve the goals and deliverables desired, prioritized to fit available funding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Space Systems, Policy and Architecture Research Consortium (SSPARC) was formed to make substantial progress on problems of national importance. The goals of SSPARC were to: • Provide technologies and methods that will allow the creation of flexible, upgradable space systems, • Create a “clean sheet” approach to space systems architecture determination and design, including the incorporation of risk, uncertainty, and flexibility issues, and • Consider the impact of national space policy on the above. This report covers the last two goals, and demonstrates that the effort was largely successful.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new approach for the control of the size of particles fabricated using the Electrohydrodynamic Atomization (EHDA) method is being developed. In short, the EHDA process produces solution droplets in a controlled manner, and as the solvent evaporates from the surface of the droplets, polymeric particles are formed. By varying the voltage applied, the size of the droplets can be changed, and consequently, the size of the particles can also be controlled. By using both a nozzle electrode and a ring electrode placed axisymmetrically and slightly above the nozzle electrode, we are able to produce a Single Taylor Cone Single Jet for a wide range of voltages, contrary to just using a single nozzle electrode where the range of permissible voltage for the creation of the Single Taylor Cone Single Jet is usually very small. Phase Doppler Particle Analyzer (PDPA) test results have shown that the droplet size increases with increasing voltage applied. This trend is predicted by the electrohydrodynamic theory of the Single Taylor Cone Single Jet based on a perfect dielectric fluid model. Particles fabricated using different voltages do not show much change in the particles size, and this may be attributed to the solvent evaporation process. Nevertheless, these preliminary results do show that this method has the potential of providing us with a way of fine controlling the particles size using relatively simple method with trends predictable by existing theories.